咨询与建议

限定检索结果

文献类型

  • 308 篇 会议
  • 129 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 439 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 198 篇 计算机科学与技术...
    • 152 篇 软件工程
    • 49 篇 信息与通信工程
    • 40 篇 控制科学与工程
    • 24 篇 生物工程
    • 19 篇 电子科学与技术(可...
    • 18 篇 机械工程
    • 18 篇 电气工程
    • 11 篇 动力工程及工程热...
    • 9 篇 力学(可授工学、理...
    • 8 篇 仪器科学与技术
    • 7 篇 农业工程
    • 6 篇 土木工程
    • 6 篇 化学工程与技术
    • 6 篇 网络空间安全
    • 5 篇 建筑学
    • 5 篇 交通运输工程
    • 5 篇 核科学与技术
  • 116 篇 理学
    • 71 篇 数学
    • 25 篇 物理学
    • 24 篇 生物学
    • 19 篇 系统科学
    • 12 篇 统计学(可授理学、...
    • 5 篇 化学
  • 65 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 24 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 9 篇 法学
    • 8 篇 社会学
  • 7 篇 农学
    • 7 篇 作物学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 医学
  • 2 篇 文学
  • 2 篇 军事学
  • 2 篇 艺术学
  • 1 篇 教育学

主题

  • 16 篇 computational mo...
  • 15 篇 deep learning
  • 15 篇 training
  • 14 篇 benchmark testin...
  • 14 篇 algorithm design...
  • 14 篇 cloud computing
  • 13 篇 computer archite...
  • 12 篇 feature extracti...
  • 11 篇 servers
  • 10 篇 scalability
  • 10 篇 clustering algor...
  • 9 篇 task analysis
  • 9 篇 throughput
  • 9 篇 laboratories
  • 9 篇 distributed proc...
  • 9 篇 hardware
  • 9 篇 distributed data...
  • 8 篇 runtime
  • 8 篇 parallel process...
  • 8 篇 fault tolerance

机构

  • 134 篇 science and tech...
  • 51 篇 college of compu...
  • 23 篇 national laborat...
  • 22 篇 science and tech...
  • 16 篇 science and tech...
  • 14 篇 national laborat...
  • 13 篇 school of comput...
  • 12 篇 national key lab...
  • 10 篇 laboratory of di...
  • 9 篇 national laborat...
  • 8 篇 school of comput...
  • 8 篇 national key lab...
  • 7 篇 national univers...
  • 7 篇 department of co...
  • 7 篇 national laborat...
  • 7 篇 college of compu...
  • 7 篇 laboratory of so...
  • 7 篇 college of scien...
  • 6 篇 national laborat...
  • 6 篇 college of compu...

作者

  • 35 篇 liu jie
  • 32 篇 jie liu
  • 19 篇 yijie wang
  • 15 篇 zhigang luo
  • 15 篇 wang yijie
  • 15 篇 peng yuxing
  • 14 篇 qinglin wang
  • 13 篇 naiyang guan
  • 13 篇 zuocheng xing
  • 12 篇 wang huaimin
  • 11 篇 chen xinhai
  • 11 篇 chunye gong
  • 11 篇 kai lu
  • 10 篇 yuxing peng
  • 10 篇 huaimin wang
  • 10 篇 wang qinglin
  • 9 篇 dongsheng li
  • 9 篇 xiaodong wang
  • 9 篇 li dongsheng
  • 9 篇 xuhui huang

语言

  • 412 篇 英文
  • 25 篇 中文
  • 2 篇 其他
检索条件"机构=Science and Technology on Paralled and Distributed Processing Laboratory"
439 条 记 录,以下是11-20 订阅
排序:
A Data-Centric Approach for Efficient and Scalable CFD Implementation on Multi-GPUs Clusters  24th
A Data-Centric Approach for Efficient and Scalable CFD Imple...
收藏 引用
24th International Conference on Parallel and distributed Computing, Applications and Technologies, PDCAT 2023
作者: Li, Ruitian Deng, Liang Dai, Zhe Zhang, Jian Liu, Jie Liu, Gang China Aerodynamic Research and Development Center Computational Aerodynamic Institute Mianyang China Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha China
Scalability is a crucial factor determining the performance of massive heterogeneous parallel CFD applications on the multi-GPUs platforms, particularly after the single-GPU implementations have achieved optimal perfo... 详细信息
来源: 评论
Factorization Machine-based Unsupervised Model Selection Method
Factorization Machine-based Unsupervised Model Selection Met...
收藏 引用
2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2022
作者: Zhang, Ruyi Wang, Yijie Xu, Hongzuo Zhou, Haifang National University of Defense Technology Science and Technology on Parallel and Distributed Processing Laboratory China
Machine learning is broadly used in many intelligent cybernetic systems. With the burgeoning of the communities of AI, the number of machine learning-based models is rapidly increasing, but picking a suitable and opti... 详细信息
来源: 评论
YFLM: An Improved Levenberg-Marquardt Algorithm for Global Bundle Adjustment  41st
YFLM: An Improved Levenberg-Marquardt Algorithm for Global ...
收藏 引用
41st Computer Graphics International Conference, CGI 2024
作者: Peng, Jiaxin Li, Tao Jiang, Qin Liu, Jie Wang, Ruibo Laboratory of Software Engineering for Complex Systems School of Computer Science National University of Defense Technology Hunan Changsha410073 China Parallel and Distributed Processing Laboratory School of Computer Science National University of Defense Technology Hunan Changsha410073 China
The conventional Levenberg-Marquardt (LM) algorithm is a state-of-the-art trust-region optimization method for solving bundle adjustment problems in the Structure-from-Motion community, which not only takes advantage ... 详细信息
来源: 评论
Optimizing Yinyang K-Means Algorithm on ARMv8 Many-Core CPUs  22nd
Optimizing Yinyang K-Means Algorithm on ARMv8 Many-Core CPU...
收藏 引用
22nd International Conference on Algorithms and Architectures for Parallel processing, ICA3PP 2022
作者: Zhou, Tianyang Wang, Qinglin Yin, Shangfei Hao, Ruochen Liu, Jie Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha410073 China School of Computer Science National University of Defense Technology Changsha410073 China
K-Means algorithm is one of the most common clustering algorithms widely applied in various data analysis applications. Yinyang K-Means algorithm is a popular enhanced K-Means algorithm that avoids most unnecessary ca... 详细信息
来源: 评论
Fast flow field prediction of pollutant leakage diffusion based on deep learning
收藏 引用
Environmental science and Pollution Research 2024年 第36期31卷 49393-49412页
作者: YunBo, Wan Zhong, Zhao Jie, Liu KuiJun, Zuo Yong, Zhang Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha410073 China Computational Aerodynamics Institute China Aerodynamics Research and Development Center Mianyang621000 China Laboratory of Digitizing Software for Frontier Equipment National University of Defense Technology Changsha410073 China School of Aeronautics Northwestern Polytechnical University Xi’an710072 China
Abstract: Predicting pollutant leakage and diffusion processes is crucial for ensuring people’s safety. While the deep learning method offers high simulation efficiency and superior generalization, there is currently... 详细信息
来源: 评论
Large-scale parallel exact diagonalization algorithm of the Hubbard model on Tianhe-2 supercomputer  22
Large-scale parallel exact diagonalization algorithm of the ...
收藏 引用
6th International Conference on High Performance Compilation, Computing and Communications, HP3C 2022
作者: Li, Biao Liu, Jie Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Hunan Changsha China
We propose a parallel exact diagonalization method for solving the large-scale Hubbard model. The core of this algorithm is the parallelization of the Lanczos algorithm, for which we propose a hierarchical communicati... 详细信息
来源: 评论
Parallel Implementation of SHA256 on Multizone Heterogeneous Systems  21
Parallel Implementation of SHA256 on Multizone Heterogeneous...
收藏 引用
21st IEEE International Symposium on Parallel and distributed processing with Applications, 13th IEEE International Conference on Big Data and Cloud Computing, 16th IEEE International Conference on Social Computing and Networking and 13th International Conference on Sustainable Computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2023
作者: Luo, Yongtao Liu, Jie Xiao, Tiaojie Gong, Chunye National University of Defense Technology Science and Technology on Parallel and Distributed Processing Laboratory Laboratory of Digitizing Program for Frontier Equipment Changsha China National Supercomputer Center in Tianjin Tianjin China
SHA-256 plays an important role in widely used applications, such as data security, data integrity, digital signatures, and cryptocurrencies. However, most of the current optimized implementations of SHA-256 are based... 详细信息
来源: 评论
Contrastive Learning with Diverse Samples  26
Contrastive Learning with Diverse Samples
收藏 引用
26th European Conference on Artificial Intelligence, ECAI 2023
作者: Wu, Lilei Liu, Jie Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha410073 China Laboratory of Digitizing Software for Frontier Equipment National University of Defense Technology Changsha410073 China
Unsupervised visual representation learning has gained much attention from the computer vision community because of the recent contrastive learning achievements. Current work mainly adopts instance discrimination as t...
来源: 评论
Differentially Private and Heterogeneity-Robust Federated Learning With Theoretical Guarantee
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第12期5卷 6369-6384页
作者: Wang, Xiuhua Wang, Shuai Li, Yiwei Fan, Fengrui Li, Shikang Lin, Xiaodong Huazhong University of Science and Technology Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Wuhan430074 China University of Electronic Science and Technology of China National Key Laboratory of Wireless Communications Chengdu611731 China Xiamen University of Technology Fujian Key Laboratory of Communication Network and Information Processing Xiamen361024 China University of Guelph School of Computer Science GuelphONN1G 2W1 Canada
Federated learning (FL) is a popular distributed paradigm where enormous clients collaboratively train a machine learning (ML) model under the orchestration of a central server without knowing the clients' private... 详细信息
来源: 评论
ParTransgrid: A scalable parallel preprocessing tool for unstructured-grid cell-centered computational fluid dynamics applications
ParTransgrid: A scalable parallel preprocessing tool for uns...
收藏 引用
作者: Zhang, Jian Liu, Jie Zhou, Naichun Tang, Jing He, Xie Chen, Jianqiang Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha China Computational Aerodynamics Institute China Aerodynamics Research and Development Center Mianyang China
The development of a basic scalable preprocessing tool is the key routine to accelerate the entire computational fluid dynamics (CFD) workflow toward the exascale computing era. In this work, a parallel preprocessing ... 详细信息
来源: 评论