咨询与建议

限定检索结果

文献类型

  • 381 篇 会议
  • 161 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 544 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 247 篇 计算机科学与技术...
    • 197 篇 软件工程
    • 65 篇 信息与通信工程
    • 50 篇 控制科学与工程
    • 37 篇 生物工程
    • 26 篇 电子科学与技术(可...
    • 25 篇 机械工程
    • 20 篇 电气工程
    • 12 篇 化学工程与技术
    • 10 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
    • 9 篇 动力工程及工程热...
    • 8 篇 农业工程
    • 7 篇 土木工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
    • 6 篇 光学工程
    • 6 篇 核科学与技术
    • 6 篇 生物医学工程(可授...
  • 147 篇 理学
    • 84 篇 数学
    • 37 篇 生物学
    • 35 篇 物理学
    • 19 篇 系统科学
    • 18 篇 统计学(可授理学、...
    • 10 篇 化学
  • 84 篇 管理学
    • 53 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 9 篇 法学
    • 8 篇 社会学
  • 8 篇 农学
    • 8 篇 作物学
  • 6 篇 医学
  • 5 篇 经济学
  • 3 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学
  • 2 篇 艺术学

主题

  • 24 篇 training
  • 19 篇 computational mo...
  • 18 篇 deep learning
  • 17 篇 feature extracti...
  • 15 篇 computer archite...
  • 15 篇 neural networks
  • 14 篇 benchmark testin...
  • 14 篇 semantics
  • 14 篇 algorithm design...
  • 14 篇 cloud computing
  • 13 篇 task analysis
  • 13 篇 servers
  • 12 篇 distributed data...
  • 11 篇 distributed proc...
  • 11 篇 machine learning
  • 11 篇 clustering algor...
  • 11 篇 kernel
  • 11 篇 accuracy
  • 10 篇 scalability
  • 10 篇 laboratories

机构

  • 135 篇 science and tech...
  • 62 篇 college of compu...
  • 36 篇 science and tech...
  • 23 篇 national laborat...
  • 22 篇 science and tech...
  • 16 篇 science and tech...
  • 14 篇 national laborat...
  • 14 篇 laboratory of di...
  • 14 篇 national key lab...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 12 篇 national key lab...
  • 9 篇 national laborat...
  • 8 篇 school of comput...
  • 8 篇 college of compu...
  • 8 篇 college of scien...
  • 8 篇 national key lab...
  • 8 篇 national key lab...
  • 7 篇 national univers...
  • 7 篇 xiangjiang lab

作者

  • 37 篇 liu jie
  • 32 篇 jie liu
  • 24 篇 yijie wang
  • 20 篇 dou yong
  • 20 篇 peng yuxing
  • 19 篇 wang yijie
  • 17 篇 zhigang luo
  • 16 篇 wang huaimin
  • 15 篇 yuxing peng
  • 15 篇 dongsheng li
  • 15 篇 qinglin wang
  • 15 篇 huaimin wang
  • 15 篇 qiao peng
  • 14 篇 li dongsheng
  • 14 篇 naiyang guan
  • 13 篇 yong dou
  • 13 篇 zuocheng xing
  • 12 篇 wang qinglin
  • 12 篇 kai lu
  • 11 篇 chen xinhai

语言

  • 513 篇 英文
  • 26 篇 中文
  • 5 篇 其他
检索条件"机构=Science and Technology on Parallel and Distributed Laboratory"
544 条 记 录,以下是201-210 订阅
排序:
Evaluating matrix multiplication-based convolution algorithm on multi-core digital signal processors
收藏 引用
Guofang Keji Daxue Xuebao/Journal of National University of Defense technology 2023年 第1期45卷 86-94页
作者: Wang, Qinglin Pei, Xiangdong Liao, Linyu Wang, Haoxu Li, Rongchun Mei, Songzhu Li, Dongsheng College of Computer Science and Technology National University of Defense Technology Changsha410073 China Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha410073 China
The matrix multiplication-based convolutional algorithm, which can efficiently implement convolutions with different parameters, is the first choice of convolution performance optimization for a given chip. Based on t... 详细信息
来源: 评论
A neuro-genetic approach for inferring gene regulatory networks from gene expression data  22
A neuro-genetic approach for inferring gene regulatory netwo...
收藏 引用
Proceedings of the 9th International Conference on Bioinformatics Research and Applications
作者: Guo Mao Zhengbin Pang Jie Liu Ke Zuo Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology China
Accurate prediction of gene regulation rules is important for understanding complex life processes. Existing computational algorithms designed for bulk transcriptome datasets typically require a large number of time p... 详细信息
来源: 评论
Location-Aware Multi-user Resource Allocation in distributed Clouds
Location-Aware Multi-user Resource Allocation in Distributed...
收藏 引用
10th Annual Conference of Advanced Computer Architecture, ACA 2014
作者: Li, Jiaxin Li, Dongsheng Zheng, Jing Quan, Yong National Key Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha China Information Center of Logistics Department Beijing China School of Computer Science National University of Defense Technology Changsha China
Resource allocation for multi-user across multiple data centers is an important problem in cloud computing environments. Many geographically-distributed users may request virtualized resources simultaneously. And the ... 详细信息
来源: 评论
MLPs: Efficient Training of MiniGo on Large-scale Heterogeneous Computing System
MLPs: Efficient Training of MiniGo on Large-scale Heterogene...
收藏 引用
International Conference on parallel and distributed Systems (ICPADS)
作者: Peng Qiao Zhouyu He Rongchun Li Jingfei Jiang Yong Dou Dongsheng Li Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China
Deep Reinforcement Learning has been successfully applied in various applications and achieved impressive performance compared with previous traditional methods but suffers from high computation cost and long training... 详细信息
来源: 评论
Aircraft Segmentation Based On Deep Learning framework : from extreme points to remote sensing image segmentation
Aircraft Segmentation Based On Deep Learning framework : fro...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Lei Zhao Peng Qiao Yong Dou Science and Technology on Parallel and Distributed Laboratory National University of Defense Changsha China
Remote sensing image segmentation is a very important technology. Although the segmentation method based on convolutional neural networks (CNNs) has achieved promising results in natural image test set, e.g. VOC or CO... 详细信息
来源: 评论
Diagonalwise refactorization: An efficient training method for depthwise convolutions
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Zheng Zhang, Zhaoning Li, Dongsheng Zhang, Yiming Peng, Yuxing Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China
Depthwise convolutions provide significant performance benefits owing to the reduction in both parameters and mult-adds. However, training depthwise convolution layers with GPUs is slow in current deep learning framew... 详细信息
来源: 评论
Merging and evolution: Improving convolutional neural networks for mobile applications
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Zheng Zhang, Zhaoning Zhang, Shiqing Yu, Hao Peng, Yuxing Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China
Compact neural networks are inclined to exploit "sparsely-connected" convolutions such as depthwise convolution and group convolution for employment in mobile applications. Compared with standard "fully... 详细信息
来源: 评论
FD-Mobilenet: Improved mobilenet with a fast downsampling strategy
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Zheng Zhang, Zhaoning Chen, Xiaotao Peng, Yuxing Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China
We present Fast-Downsampling MobileNet (FD-MobileNet), an efficient and accurate network for very limited computational budgets (e.g., 10-140 MFLOPs). Our key idea is applying a fast downsampling strategy to MobileNet... 详细信息
来源: 评论
Topology-aware deployment of scientific applications in cloud computing
Topology-aware deployment of scientific applications in clou...
收藏 引用
2012 IEEE 5th International Conference on Cloud Computing, CLOUD 2012
作者: Fan, Pei Chen, Zhenbang Wang, Ji Zheng, Zibin Lyu, Michael R. National Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha 410073 China Dept. of Computer Science and Engineering Chinese University of Hong Kong Hong Kong Hong Kong
Nowadays, more and more scientific applications are moving to cloud computing. The optimal deployment of scientific applications is critical for providing good services to users. Scientific applications are usually to... 详细信息
来源: 评论
Toward optimal deployment of communication-intensive cloud applications
Toward optimal deployment of communication-intensive cloud a...
收藏 引用
International Conference on Cloud Computing
作者: Fan, Pei Wang, Ji Zheng, Zibin Lyu, Michael R. National Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha 410073 China Dept. of Computer Science and Engineering Chinese University of Hong Kong Hong Kong Hong Kong
Strongly promoted by the leading industrial companies, cloud computing becomes increasingly popular in recent years. The growth rate of cloud computing surpasses even the most optimistic predictions. A cloud applicati... 详细信息
来源: 评论