咨询与建议

限定检索结果

文献类型

  • 450 篇 会议
  • 205 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 660 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 415 篇 工学
    • 320 篇 计算机科学与技术...
    • 249 篇 软件工程
    • 83 篇 信息与通信工程
    • 56 篇 控制科学与工程
    • 43 篇 电子科学与技术(可...
    • 43 篇 生物工程
    • 32 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 动力工程及工程热...
    • 14 篇 仪器科学与技术
    • 14 篇 化学工程与技术
    • 11 篇 网络空间安全
    • 10 篇 交通运输工程
    • 9 篇 光学工程
    • 9 篇 土木工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 环境科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 7 篇 农业工程
  • 170 篇 理学
    • 94 篇 数学
    • 43 篇 生物学
    • 29 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 24 篇 系统科学
    • 18 篇 化学
  • 114 篇 管理学
    • 81 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 25 篇 工商管理
  • 17 篇 法学
    • 13 篇 社会学
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 8 篇 农学
  • 7 篇 医学
  • 6 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 26 篇 training
  • 25 篇 computational mo...
  • 24 篇 feature extracti...
  • 19 篇 deep learning
  • 18 篇 cloud computing
  • 15 篇 machine learning
  • 14 篇 benchmark testin...
  • 14 篇 hardware
  • 14 篇 accuracy
  • 12 篇 task analysis
  • 12 篇 computer archite...
  • 12 篇 neural networks
  • 12 篇 educational inst...
  • 12 篇 convolution
  • 12 篇 algorithm design...
  • 12 篇 kernel
  • 12 篇 distributed data...
  • 11 篇 servers
  • 11 篇 data models
  • 10 篇 quality of servi...

机构

  • 111 篇 college of compu...
  • 77 篇 science and tech...
  • 41 篇 national laborat...
  • 26 篇 college of compu...
  • 22 篇 science and tech...
  • 21 篇 key laboratory o...
  • 18 篇 national laborat...
  • 16 篇 science and tech...
  • 14 篇 science and tech...
  • 14 篇 national laborat...
  • 13 篇 school of comput...
  • 12 篇 national key lab...
  • 11 篇 national key lab...
  • 11 篇 national key lab...
  • 10 篇 national key lab...
  • 10 篇 national key lab...
  • 10 篇 college of compu...
  • 10 篇 national laborat...
  • 9 篇 college of compu...
  • 8 篇 school of comput...

作者

  • 28 篇 dongsheng li
  • 24 篇 yijie wang
  • 23 篇 li dongsheng
  • 23 篇 wang huaimin
  • 20 篇 zhigang luo
  • 20 篇 wang yijie
  • 20 篇 huaimin wang
  • 18 篇 naiyang guan
  • 18 篇 lu jun
  • 17 篇 jun lu
  • 16 篇 peng yuxing
  • 15 篇 liu jie
  • 13 篇 yuxing peng
  • 13 篇 dou yong
  • 13 篇 jie liu
  • 12 篇 xiang zhang
  • 12 篇 lai zhiquan
  • 12 篇 qiao peng
  • 12 篇 yin gang
  • 11 篇 ding bo

语言

  • 628 篇 英文
  • 26 篇 中文
  • 6 篇 其他
检索条件"机构=Science and Technology on Parallel and Distributed Laboratory College of Computer"
660 条 记 录,以下是111-120 订阅
排序:
Double Loss Block Neural Architecture Search  10
Double Loss Block Neural Architecture Search
收藏 引用
10th IEEE Joint International Information technology and Artificial Intelligence Conference, ITAIC 2022
作者: Liu, Yang Lu, Jun College of Computer Science and Technology Heilongjiang University Harbin150080 China Heilongjiang University Key Laboratory of Database and Parallel Computing of Heilongjiang Province Harbin150080 China
Neural architecture search aims to automatically design network architectures by machines, which is expected to bring about a new revolution in machine learning. Despite high expectations, the effectiveness and effici... 详细信息
来源: 评论
Offline Imitation Learning Using Reward-free Exploratory Data  22
Offline Imitation Learning Using Reward-free Exploratory Dat...
收藏 引用
Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence
作者: Hao Wang Dawei Feng Bo Ding Wei Li College of Computer National University of Defense Technology China National Laboratory for Parallel and Distributed Processing National University of Defense Technology China Independent Researcher China
Offline imitative learning(OIL) is often used to solve complex continuous decision-making tasks. For these tasks such as robot control, automatic driving and etc., it is either difficult to design an effective reward ... 详细信息
来源: 评论
TeeSwap: Private Data Exchange using Smart Contract and Trusted Execution Environment  23
TeeSwap: Private Data Exchange using Smart Contract and Trus...
收藏 引用
23rd IEEE International Conference on High Performance Computing and Communications, 7th IEEE International Conference on Data science and Systems, 19th IEEE International Conference on Smart City and 7th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Applications, HPCC-DSS-SmartCity-DependSys 2021
作者: Chen, Peng Shi, Peichang Xu, Jie Fu, Xiang Li, Linhui Zhong, Tao Xiang, Liangliang Kong, Jinzhu College of Computer National University of Defense Technology National Key Laboratory of Parallel and Distributed Processing Changsha410073 China Zhejiang Lab Hangzhou311100 China Kylin Software Co. Ltd Changsha410073 China
With importance of data value is approved, data-sharing will create more and greater value has become consensus. However, data exchange has to use a trusted third party(TTP) as an intermediary in an untrusted network ... 详细信息
来源: 评论
ShuffleVITNet: Mobile-Friendly Vision Transformer With Less-Memory
ShuffleVITNet: Mobile-Friendly Vision Transformer With Less-...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Xinyu Zhao Jun Lu College of Computer Science and Technology Heilongjiang University Harbin China Key Laboratory of Database and Parallel Computing of Heilongjiang Province Harbin China
Traditional Convolutional Neural Networks (CNNs) can efficiently acquire local features, while ViT uses a Transformer structure that captures global contextual information. In this paper, a new high-performance lightw... 详细信息
来源: 评论
Contrastive Enhanced Filter Model Based on Bidirectional Transformer for Sequential Recommendation
Contrastive Enhanced Filter Model Based on Bidirectional Tra...
收藏 引用
Image Processing, Electronics and computers (IPEC), Asia-Pacific Conference on
作者: Anpeng Sun Jun Lu College of Computer Science and Technology Heilongjiang University Harbin China Key Laboratory of Database and Parallel Computing of Heilongjiang Province Harbin China
Transformer-based sequential recommendation is highly powerful as it can capture short-term and long-term sequential recommendation. It plays a crucial role in personalized recommendation systems, aiming to extract dy... 详细信息
来源: 评论
BIVD: Improved Side Adapter Network based on BiFormer
BIVD: Improved Side Adapter Network based on BiFormer
收藏 引用
Image Processing, Electronics and computers (IPEC), Asia-Pacific Conference on
作者: Liyuan Hu Jun Lu College of Computer Science and Technology Heilongjiang University Harbin China Key Laboratory of Database and Parallel Computing of Heilongjiang Province Harbin China
Currently, most open vocabulary models rely on CLIP (Contrastive Language-Image Pre-training) to classify masked regions, but CLIP models still have many drawbacks. The traditional transformer model is context aware t... 详细信息
来源: 评论
FedNAT: Byzantine-robust Federated Learning through Activation-based Attention Transfer
FedNAT: Byzantine-robust Federated Learning through Activati...
收藏 引用
IEEE International Conference on Data Mining Workshops (ICDM Workshops)
作者: Mengxin Wang Liming Fang Kuiqi Chen College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Nanjing University of Aeronautics and Astronautics Shenzhen Research Institute Shenzhen China Science and Technology on Parallel and Distributed Processing Laboratory (PDL) Changsha China
Federated learning (FL) is a decentralized machine learning framework that prioritizes privacy by allowing clients to train statistical models without sharing their private data, thus eliminating the impact of data fo...
来源: 评论
Cross-Modality Encoder Representations Based On External Attention Mechanism
Cross-Modality Encoder Representations Based On External Att...
收藏 引用
Neural Networks, Information and Communication Engineering (NNICE), International Conference on
作者: Yudong Zheng Jun Lu College of Computer Science and Technology Heilongjiang University Harbin China College of Computer Science and Technology Heilongjiang University Key Laboratory of Database and Parallel Computing of Heilongjiang Province Harbin China
With the prevalence of deep learning, people use multi-modality information for interpretation and reasoning. In this paper, a cross-modality encoder CMEEA (cross-modality encoder representation based on external atte... 详细信息
来源: 评论
A Class of Fast and Accurate Multi-layer Block Summation and Dot Product Algorithms  18th
A Class of Fast and Accurate Multi-layer Block Summation a...
收藏 引用
18th IFIP WG 10.3 International Conference on Network and parallel Computing, NPC 2021
作者: He, Kang Barrio, Roberto Chen, Lin Jiang, Hao Liu, Jie Gu, Tongxiang Qi, Jin Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha410073 China Department of Applied Mathematics University of Zaragoza ZaragozaE50009 Spain College of Computer National University of Defense Technology Changsha410073 China Institute of Applied Physics and Computational Mathematics Beijing100000 China
Basic recursive summation and common dot product algorithm have a backward error bound that grows linearly with the vector dimension. Blanchard [1] proposed a class of fast and accurate summation and dot product algor... 详细信息
来源: 评论
Merak: An Efficient distributed DNN Training Framework with Automated 3D parallelism for Giant Foundation Models
arXiv
收藏 引用
arXiv 2022年
作者: Lai, Zhiquan Li, Shengwei Tang, Xudong Ge, Keshi Liu, Weijie Duan, Yabo Qiao, Linbo Li, Dongsheng The National Laboratory for Parallel and Distributed Processing College of Computer National University of Defense Technology in Changsha Hunan China
Foundation models are in the process of becoming the dominant deep learning technology. Pretraining a foundation model is always time-consuming due to the large scale of both the model parameter and training dataset. ... 详细信息
来源: 评论