咨询与建议

限定检索结果

文献类型

  • 1,267 篇 会议
  • 555 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,823 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,109 篇 工学
    • 556 篇 计算机科学与技术...
    • 494 篇 信息与通信工程
    • 397 篇 软件工程
    • 194 篇 电子科学与技术(可...
    • 165 篇 控制科学与工程
    • 162 篇 电气工程
    • 138 篇 仪器科学与技术
    • 96 篇 光学工程
    • 88 篇 生物工程
    • 82 篇 机械工程
    • 64 篇 生物医学工程(可授...
    • 64 篇 网络空间安全
    • 58 篇 航空宇航科学与技...
    • 47 篇 化学工程与技术
    • 30 篇 建筑学
    • 29 篇 土木工程
    • 27 篇 力学(可授工学、理...
    • 27 篇 动力工程及工程热...
    • 24 篇 材料科学与工程(可...
  • 665 篇 理学
    • 366 篇 数学
    • 200 篇 物理学
    • 120 篇 统计学(可授理学、...
    • 98 篇 生物学
    • 94 篇 化学
    • 66 篇 系统科学
  • 197 篇 管理学
    • 107 篇 管理科学与工程(可...
    • 94 篇 图书情报与档案管...
    • 23 篇 工商管理
  • 54 篇 医学
    • 46 篇 临床医学
    • 35 篇 基础医学(可授医学...
  • 17 篇 农学
  • 15 篇 法学
  • 12 篇 军事学
  • 9 篇 经济学
  • 4 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 72 篇 feature extracti...
  • 55 篇 synthetic apertu...
  • 54 篇 signal processin...
  • 54 篇 signal processin...
  • 42 篇 simulation
  • 41 篇 estimation
  • 41 篇 training
  • 40 篇 radar imaging
  • 38 篇 signal to noise ...
  • 34 篇 optimization
  • 33 篇 radar
  • 30 篇 accuracy
  • 29 篇 imaging
  • 28 篇 support vector m...
  • 28 篇 neural networks
  • 27 篇 interference
  • 27 篇 radar detection
  • 25 篇 image segmentati...
  • 25 篇 laboratories
  • 24 篇 target tracking

机构

  • 120 篇 national laborat...
  • 106 篇 national key lab...
  • 60 篇 school of comput...
  • 59 篇 xidian universit...
  • 51 篇 school of comput...
  • 49 篇 national key lab...
  • 46 篇 key laboratory o...
  • 38 篇 national key lab...
  • 35 篇 xinjiang key lab...
  • 33 篇 key laboratory o...
  • 32 篇 xidian universit...
  • 31 篇 national laborat...
  • 24 篇 science and tech...
  • 21 篇 hangzhou institu...
  • 20 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 19 篇 university of ch...
  • 17 篇 key laboratory o...
  • 16 篇 key laboratory o...
  • 14 篇 nanjing research...

作者

  • 31 篇 liu hongwei
  • 30 篇 liao guisheng
  • 30 篇 guisheng liao
  • 29 篇 hongwei liu
  • 28 篇 yang tian
  • 27 篇 haoping wang
  • 26 篇 zhang xingyi
  • 22 篇 xing mengdao
  • 20 篇 mengdao xing
  • 20 篇 lan lan
  • 19 篇 li chenglong
  • 19 篇 zhou shenghua
  • 19 篇 tang jin
  • 18 篇 zhao shu
  • 17 篇 jia zhenhong
  • 17 篇 cichocki andrzej
  • 17 篇 yang zhiwei
  • 17 篇 zhang yanping
  • 16 篇 yan junkun
  • 16 篇 shenghua zhou

语言

  • 1,728 篇 英文
  • 49 篇 其他
  • 44 篇 中文
检索条件"机构=Science and Technology on Radar Signal Processing Laboratory"
1823 条 记 录,以下是671-680 订阅
排序:
Extended State Observer Based Fault-Tolerant Predictive Control for a Four-Mecanum Wheels Mobile Robot
Extended State Observer Based Fault-Tolerant Predictive Cont...
收藏 引用
IEEE International Conference on Cyber technology in Automation, Control, and Intelligent Systems
作者: Binghao Yang Dongliang Wang Ziling Wen Wu Wei Wenji Li Zhun Fan Key Lab of Digital Signal and Image Processing of Guangdong Province Shantou University Guangdong China School of Department of Electronic and Information Engineering Shantou University Guangdong China Key Laboratory of Autonomous Systems and Networked Control Ministry of Education Guangzhou Guangdong China School of Automation Science and Engineering South China University of Technology Guangzhou Guangdong China
The application of unmanned vehicles in industrial cargo transportation is becoming increasingly widespread, particularly playing a significant role in transporting heavy-duty goods. However, when performing such task... 详细信息
来源: 评论
Attention based Temporal convolutional network for Ф-OTDR event classification  19
Attention based Temporal convolutional network for Ф-OTDR e...
收藏 引用
19th International Conference on Optical Communications and Networks, ICOCN 2021
作者: Tian, Manling Dong, Hui Yu, Kuanglu Beijing Key Laboratory of Modern Information Science and Network Technology Beijing Jiaotong University Beijing100044 China Institute of Information Science Beijing Jiaotong University Beijing100044 China Signal Processing. RF & Optical Department Institute for Inforcomm Research A*Star Research Entities Singapore138632 Singapore
We designed a new attention based temporal convolutional network combined with bidirectional long short term memory model named ATCN-BiLSTM for Ф-OTDR event classification, achieving average classification accuracy o... 详细信息
来源: 评论
Monitoring the Growth Status of Winter Wheat by Using the Machine Learning Algorithm and the Fusion of Spectral and Texture Features Derived from the Uav Remote Sensing
SSRN
收藏 引用
SSRN 2023年
作者: Su, YiMing Li, Hao Chen, Ping Zhang, Zhen Zhao, Yu Fahad, Shafiq Wang, Chao Yan, XiaoBin Liang, ZiHao Zhao, ShuangMei Qiao, XingXing Feng, MeiChen Song, XiaoYan Xiao, LuJie Yang, WuDe College of Agronomy Shanxi Agriculture University Taigu030801 China Shanxi Key Laboratory of Signal Capturing & Processing North University of China Shanxi Taiyuan030051 China Nanjing University of Information Science and Technology China Department of Botany Government College University Punjab Lahore54000 Pakistan
The rapid development of unmanned aerial vehicle (UAV) remote sensing could provide critical data support for estimating the real-time crop growth status. In this study, the vegetation indexes (VI) and texture feature... 详细信息
来源: 评论
Few-Shot Medical Image Segmentation with High-Fidelity Prototypes
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Song Yan, Shaxu Qi, Xiaozhi Gao, Jianxin Ye, Mao Zhang, Jianwei Zhu, Xiatian IMI Group School of Health Sciences and Engineering University of Shanghai for Science and Technology Shanghai China TAMS Group Department of Informatics Universität Hamburg Hamburg Germany School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China Surrey Institute for People-Centred Artificial Intelligence Centre for Vision Speech and Signal Processing University of Surrey Guildford United Kingdom Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China
Few-shot Semantic Segmentation (FSS) aims to adapt a pretrained model to new classes with as few as a single labelled training sample per class. Despite the prototype based approaches have achieved substantial success... 详细信息
来源: 评论
A Probabilistic Jamming Strategy Model for Frequency Agility radar Anti-Jamming Problem
A Probabilistic Jamming Strategy Model for Frequency Agility...
收藏 引用
IEEE International Conference on radar
作者: Youlin Fan Bo Jiu Wenqiang Pu Kang Li Hailin Li Hongwei Liu National Laboratory of Radar Signal Processing Xidian University Xi'an China Shenzhen Research Institute of Big Data Shenzhen China Beijing Institute of Tracking and Telecommunication Technology Beijing China
With the development of electronic warfare, the jammer is much smarter than before and can adopt different strategies to jam the radar. To design efficient anti-jamming strategies, the radar anti-jamming problem is re... 详细信息
来源: 评论
Research on OTFS Performance Based on Joint-Sparse Fast Time-Varying Channel Estimation  14th
Research on OTFS Performance Based on Joint-Sparse Fast Time...
收藏 引用
14th EAI International Conference on Communications and Networking in China, ChinaCom 2019
作者: Gao, Wenjing Li, Shanshan Zhao, Lei Guo, Wenbin Peng, Tao Wireless Signal Processing and Network Laboratory Beijing University of Posts and Telecommunications Beijing100876 China Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Beijing China
Contraposing the problem of high pilot overhead and poor estimation performance for OFDM system in fast time-varying channels, a novel channel estimation method based on joint-sparse basis expansion model is proposed.... 详细信息
来源: 评论
A Dynamic Transformer Network for Vehicle Detection
收藏 引用
IEEE Transactions on Consumer Electronics 2025年
作者: Tian, Chunwei Liu, Kai Zhang, Bob Huang, Zhixiang Lin, Chia-Wen Zhang, David Harbin Institute of Technology School of Computer Science and Technology Harbin15001 China Macao Special Administrative Region of China PAMI Research Group University of Macau 999078 China Anhui University Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Key Laboratory of Electromagnetic Environmental Sensing Hefei230601 China National Tsing Hua University Department of Electrical Engineering Institute of Communications Engineering Hsinchu Taiwan School of Data Science Shenzhen518172 China
Stable consumer electronic systems can assist traffic better. Good traffic consumer electronic systems require collaborative work between traffic algorithms and hardware. However, performance of popular traffic algori... 详细信息
来源: 评论
Hyper-Parameter Auto-Tuning for Sparse Bayesian Learning
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Dawei Guo, Qinghua Jin, Ming Liao, Guisheng Eldar, Yonina C. The Hangzhou Institute of Technology Xidian University Hangzhou311200 China The National Laboratory of Radar Signal Processing Xidian University Xi’an710071 China The School of Electrical Computer and Telecommunications Engineering University of Wollongong NSW2522 Australia The Faculty of Electrical Engineering and Computer Science Ningbo University Ningbo315211 China The Faculty of Math and CS Weizmann Institute of Science Rehovot7610001 Israel
Choosing the values of hyper-parameters in sparse Bayesian learning (SBL) can significantly impact performance. However, the hyper-parameters are normally tuned manually, which is often a difficult task. Most recently... 详细信息
来源: 评论
Self-decoupling 5G MIMO Antenna via Grounding for Mobile Phones
Self-decoupling 5G MIMO Antenna via Grounding for Mobile Pho...
收藏 引用
IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)
作者: Wei Zhou Junwei Qi Yingsong Li College of Information and Communication Engineering Harbin Engineering University (HEU) China College of Computer Science and Technology HEU China Key Laboratory of Intelligent Computing Signal Processing Ministry of Education Anhui University Hefei China
This paper presents a self-decoupling high isolation terminal antenna for mobile phones which can applied to 5G multiple-input-multiple-output (MIMO) communication systems. The significant decoupling effect is achieve... 详细信息
来源: 评论
21-cm foreground removal using AI and the frequency-difference technique
收藏 引用
Physical Review D 2024年 第6期109卷 063509-063509页
作者: Feng Shi Haoxiang Chang Le Zhang Huanyuan Shan Jiajun Zhang Suiping Zhou Ming Jiang Zitong Wang School of Aerospace Science and Technology Xidian University Xi’an 710126 People’s Republic of China Peng Cheng Laboratory No. 2 Xingke 1st Street Shenzhen 518000 People’s Republic of China School of Physics and Astronomy Sun Yat-sen University 2 Daxue Road Tangjia Zhuhai 519082 People’s Republic of China CSST Science Center for the Guangdong-Hong Kong-Macau Greater Bay Area Zhuhai 519082 People’s Republic of China Shanghai Astronomical Observatory (SHAO) Nandan Road 80 Shanghai 200030 China University of Chinese Academy of Sciences Beijing 100049 People’s Republic of China National Key Laboratory of Radar Signal Processing Xidian University Xi’an 710126 People’s Republic of China
The deep learning technique has been employed in removing foreground contaminants from 21-cm intensity mapping, but its effectiveness is limited by the large dynamic range of the foreground amplitude. In this study, w... 详细信息
来源: 评论