咨询与建议

限定检索结果

文献类型

  • 1,266 篇 会议
  • 555 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,822 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,099 篇 工学
    • 552 篇 计算机科学与技术...
    • 492 篇 信息与通信工程
    • 392 篇 软件工程
    • 194 篇 电子科学与技术(可...
    • 164 篇 控制科学与工程
    • 159 篇 电气工程
    • 137 篇 仪器科学与技术
    • 91 篇 光学工程
    • 87 篇 生物工程
    • 83 篇 机械工程
    • 64 篇 生物医学工程(可授...
    • 64 篇 网络空间安全
    • 58 篇 航空宇航科学与技...
    • 45 篇 化学工程与技术
    • 31 篇 建筑学
    • 30 篇 土木工程
    • 27 篇 力学(可授工学、理...
    • 27 篇 动力工程及工程热...
    • 26 篇 材料科学与工程(可...
    • 22 篇 船舶与海洋工程
  • 657 篇 理学
    • 363 篇 数学
    • 197 篇 物理学
    • 120 篇 统计学(可授理学、...
    • 98 篇 生物学
    • 92 篇 化学
    • 66 篇 系统科学
  • 195 篇 管理学
    • 105 篇 管理科学与工程(可...
    • 94 篇 图书情报与档案管...
  • 53 篇 医学
    • 45 篇 临床医学
    • 34 篇 基础医学(可授医学...
  • 18 篇 农学
  • 15 篇 法学
  • 12 篇 军事学
  • 9 篇 经济学
  • 4 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 73 篇 feature extracti...
  • 54 篇 synthetic apertu...
  • 54 篇 signal processin...
  • 52 篇 signal processin...
  • 43 篇 training
  • 42 篇 simulation
  • 40 篇 estimation
  • 39 篇 radar imaging
  • 38 篇 signal to noise ...
  • 35 篇 optimization
  • 32 篇 radar
  • 30 篇 accuracy
  • 28 篇 imaging
  • 28 篇 support vector m...
  • 28 篇 neural networks
  • 27 篇 interference
  • 27 篇 radar detection
  • 25 篇 image segmentati...
  • 25 篇 laboratories
  • 24 篇 target tracking

机构

  • 120 篇 national laborat...
  • 106 篇 national key lab...
  • 61 篇 school of comput...
  • 58 篇 xidian universit...
  • 52 篇 school of comput...
  • 50 篇 national key lab...
  • 45 篇 key laboratory o...
  • 38 篇 national key lab...
  • 36 篇 xinjiang key lab...
  • 33 篇 key laboratory o...
  • 32 篇 xidian universit...
  • 31 篇 national laborat...
  • 24 篇 science and tech...
  • 21 篇 key laboratory o...
  • 21 篇 hangzhou institu...
  • 20 篇 key laboratory o...
  • 20 篇 university of ch...
  • 17 篇 key laboratory o...
  • 16 篇 key laboratory o...
  • 15 篇 school of inform...

作者

  • 31 篇 liu hongwei
  • 30 篇 liao guisheng
  • 30 篇 guisheng liao
  • 29 篇 hongwei liu
  • 28 篇 yang tian
  • 27 篇 haoping wang
  • 24 篇 zhang xingyi
  • 21 篇 xing mengdao
  • 20 篇 mengdao xing
  • 20 篇 lan lan
  • 19 篇 li chenglong
  • 19 篇 zhou shenghua
  • 19 篇 tang jin
  • 18 篇 zhao shu
  • 17 篇 cichocki andrzej
  • 17 篇 yang zhiwei
  • 17 篇 zhang yanping
  • 16 篇 jia zhenhong
  • 16 篇 yan junkun
  • 16 篇 shenghua zhou

语言

  • 1,664 篇 英文
  • 116 篇 其他
  • 40 篇 中文
检索条件"机构=Science and Technology on Radar Signal Processing Laboratory"
1822 条 记 录,以下是811-820 订阅
排序:
Active Learning for Spam Email Classification  19
Active Learning for Spam Email Classification
收藏 引用
Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence
作者: Zheng Chen Ruiwen Tao Xiaoyang Wu Zhimin Wei Xiao Luo School of Information & Software Engineering University of Electronic Science & Technology of China National Key Laboratory of Science and Technology on Blind Signal Processing Chengdu Sichuan China
Deep learning has yielded state-of-the-art performance on text classification tasks. In this paper, a new neural network based on Long-Short-Term-Memory model is applied to classify spam emails. Using deep learning me... 详细信息
来源: 评论
Software in the natural world: A computational approach to hierarchical emergence
arXiv
收藏 引用
arXiv 2024年
作者: Rosas, Fernando E. Geiger, Bernhard C. Luppi, Andrea I. Seth, Anil K. Polani, Daniel Gastpar, Michael Mediano, Pedro A.M. Department of Informatics University of Sussex United Kingdom Sussex Centre for Consciousness Science and Sussex AI University of Sussex United Kingdom Center for Psychedelic Research and Centre for Complexity Science Department of Brain Science Imperial College London United Kingdom Center for Eudaimonia and Human Flourishing University of Oxford United Kingdom Know-Center GmbH Graz Austria Signal Processing and Speech Communication Laboratory Graz University of Technology Graz Austria Montreal Neurological Institute McGill University Canada Department of Computer Science University of Hertfordshire Hatfield United Kingdom School of Computer and Communication Sciences EPFL Lausanne Switzerland Department of Computing Imperial College London United Kingdom Division of Psychology and Language Sciences University College London United Kingdom
Understanding the functional architecture of complex systems is crucial to illuminate their inner workings and enable effective methods for their prediction and control. Recent advances have introduced tools to charac... 详细信息
来源: 评论
Disentangled Generation Network for Enlarged License Plate Recognition and A Unified Dataset
arXiv
收藏 引用
arXiv 2022年
作者: Li, Chenglong Yang, Xiaobin Wang, Guohao Zheng, Aihua Tan, Chang Jia, Ruoran Tang, Jin Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China Information Materials and Intelligent Sensing Laboratory of Anhui Province Key Lab of Intelligent Computing and Signal Processing Ministry of Education Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China iFLYTEK Co. Ltd. Hefei230088 China
License plate recognition plays a critical role in many practical applications, but license plates of large vehicles are difficult to be recognized due to the factors of low resolution, contamination, low illumination... 详细信息
来源: 评论
On Error Performance and Concatenated Coding of Polar Codes in AWGN Channels
On Error Performance and Concatenated Coding of Polar Codes ...
收藏 引用
第四届遥感与无线通信国际会议
作者: Jing Jin Rui Deng Tiansheng Liu Liping Li Key Laboratory of Intelligent Computing and Signal Processing (Ministry of Education) Anhui University Department of Electronic Engineering and Information Science University of Science and Technology
In additive white Gaussian noise(AWGN) channels, construction of polar codes is needed for every operating signal-to-noise ratio(SNR). Recently, the proposal of the design-SNR reduces the computation effort in con...
来源: 评论
Joint multi-task cascade for instance segmentation
Joint multi-task cascade for instance segmentation
收藏 引用
作者: Wen, Yaole Hu, Fuyuan Ren, Jinchang Shang, Xinru Li, Linyan Xi, Xuefeng School of Electronic & Information Engineering Suzhou University of Science and Technology SuzhouJiangsu215009 China Centre for Signal and Image Processing University of Strathclyde Glasgow United Kingdom Suzhou Institute of Trade & Commerce SuzhouJiangsu215009 China Virtual Reality Key Laboratory of Intelligent Interaction and Application Technology of Suzhou Suzhou University of Science and Technology SuzhouJiangsu215009 China Suzhou Key Laboratory for Big Data and Information Service Suzhou University of Science and Technology SuzhouJiangsu215009 China
Instance segmentation requires both pixel-level classification accuracy and high-level semantic features at the target instance level, which is very challenging, and the cascade structure can effectively improve both ... 详细信息
来源: 评论
Uncertainty estimation by boosting with Gaussian process for expensive optimization problems
收藏 引用
Applied Soft Computing 2025年 180卷
作者: Zou, Hanhua Zeng, Sanyou Li, Changhe Jiao, Ruwang Zhao, Fei School of Mechanical Engineering and Electronic Information China University of Geosciences Wuhan China School of Artificial Intelligence Anhui University of Science & Technology Hefei China School of Future Science and Engineering Soochow University Suzhou China National Key Laboratory of Blind Signal Processing Chengdu China
In surrogate-assisted evolutionary algorithms (SAEAs), uncertainty measures the confidence level of the predicted fitness and plays an important role in selecting candidate points for expensive evaluation, as evaluati... 详细信息
来源: 评论
Precise irrigation of dryland cotton under canal irrigation system constraints based on the CERES-CROPGRO-Cotton model
收藏 引用
Agricultural Water Management 2025年 317卷
作者: Lei Wang Liang He Weihong Sun Chen Gao Zhenxiang Han Meiwei Lin School of Computer Science and Technology Xinjiang University Urumqi 830017 China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi 830017 China Department of Electronic Engineering and Beijing National Research Center for Information Science and Technology Tsinghua University Beijing 100084 China School of Agricultural Engineering Jiangsu University Zhenjiang 212013 China
Xinjiang agriculture faces significant challenges due to water resource scarcity and uneven distribution, making accurate predictions of irrigation's impact on cotton yield crucial for decision-making. Existing st... 详细信息
来源: 评论
Active learning for spam email classification  2
Active learning for spam email classification
收藏 引用
2nd International Conference on Algorithms, Computing and Artificial Intelligence, ACAI 2019
作者: Chen, Zheng Tao, Ruiwen Wu, Xiaoyang Wei, Zhimin Luo, Xiao School of Information and Software Engineering University of Electronic Science and Technology of China China National Key Laboratory of Science and Technology on Blind Signal Processing Chengdu Sichuan China
Deep learning has yielded state-of-the-art performance on text classification tasks. In this paper, a new neural network based on Long-Short-Term-Memory model is applied to classify spam emails. Using deep learning me... 详细信息
来源: 评论
In-Silico Trained AI for Enhanced T2 Spectrum Imaging and Myelin Water Fraction Mapping in Preclinical 7T MRI
In-Silico Trained AI for Enhanced T2 Spectrum Imaging and My...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Daniel Vallejo-Aldana Alonso Ramírez-Manzanares Erick J. Canales-Rodríguez Thomas Yu Abraham Cisneros-Mejorado Luis Concha Jonathan Rafael-Patiño Jean-Philippe Thiran Computer Science Department Centro de Investigación en Matemáticas A.C Guanajuato México Signal Processing Laboratory (LTS5) École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland Advanced Clinical Imaging Technology Siemens Healthineers International AG Lausanne Switzerland Instituto de Neurobiología Universidad Nacional Autónoma de México Juriquilla México Radiology Department Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne Switzerland CIBM Center for Biomedical Imaging Switzerland
This study introduces a Machine Learning (ML) approach for estimating the T 2 spectrum and myelin water fraction (MWF) using multi-echo T 2 (MET 2 ) data from preclinical 7T Magnetic Resonance Imaging (MRI) scanners... 详细信息
来源: 评论
Kalmannet: Data-Driven Kalman Filtering
Kalmannet: Data-Driven Kalman Filtering
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing
作者: Guy Revach Nir Shlezinger Ruud J. G. van Sloun Yonina C. Eldar Signal Processing Laboratory (ISI) ETH Zurich Switzerland School of ECE Ben-Gurion University of the Negev Beer Sheva Israel Eindhoven University of Technology and with Phillips Research Eindhoven The Netherlands Faculty of Math and CS Weizmann Institute of Science Rehovot Israel
The Kalman filter (KF) is a celebrated signal processing algorithm, implementing optimal state estimation of dynamical systems that are well represented by a linear Gaussian state-space model. The KF is model-based, a... 详细信息
来源: 评论