Thermal characteristics during startup of CSR1000 are directly related to the security of supercritical water reactors. The heat transfer model during power-raising phase is built according to the sliding pressure mod...
详细信息
Stress intensity factors(SIFs) due to thermal-mechanical load has been established by using weight function method. Two reference stress states sere used to determine the coefficients in the weight function. Results w...
Stress intensity factors(SIFs) due to thermal-mechanical load has been established by using weight function method. Two reference stress states sere used to determine the coefficients in the weight function. Results were evaluated by using data from literature and show a good agreement between them. So, the SIFs can be determined quickly using the weight function obtained when cracks subjected to arbitrary loads, and presented method can be used for probabilistic fracture mechanics analysis. A probabilistic methodology considering Monte-Carlo with neural network (MCNN) has been developed. The results indicate that an accurate probabilistic characteristic of the KI can be obtained by using the developed method. The probability of failure increases with the increasing of loads, and the relationship between is nonlinear.
Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing ma...
Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing machine (MTS). Test data of material's mechanical behavior including uniaxial tension, low cycle fatigue (LCF), threshold value of stress intensity factor (SIF) range, fatigue crack growth (FCG), and fracture toughness is generated and given for further study. It is worth noting that the model in predicting FCG of material from LCF parameters is verified and discussed.
In this paper, Eulerian two-fluid model coupled with extended wall boiling model is used to simulate the subcooled boiling flow in PSBT subchannel test. Improved sub-models are used to describe the heat flux distribut...
详细信息
作者:
Abhishek KumarR. DhanuskodiR. KaliappanK. NandakumarAbhishek Kumar teaches design philosophies at Anant National University
Ahmedabad. He earned his Ph.D in Management from Pondicherry University. He is an Economics graduate from Calcutta University and MBA from BIM Trichy. He has published more than 20 articles in reputed international journals has authored two books written articles and columns for newspapers and is quoted on issues related to leadership and marketing by various media platforms. His research work comprises construction of brand personality scale for media aesthetics and phenomenological design. His recent publications are on philosophy of a photograph hermeneutic reality of product and on philosophy of intimate spaces. R. Dhanuskodi has nearly 40 years of R&D experience at BHEL
India in technical areas applicable for thermal power plants. He is a life member of The Institution of Engineers (India) and The Combustion Institute. He has won two BHEL’s Excel awards under the best author category for technical papers. He has visited France Netherlands and Germany under Indo-Europe Clean Coal Development Program. He has guided 42 UG PG and PhD project works. He holds 11 patents 40 copyrights and 2 design registrations. He has presented papers in 20 conferences and published in 10 national and international journals. R. Kaliappan completed his bachelors in electrical and electronics engineering and Masters in Computer Science. He has 36 years of research experience in different fields of power generation and power plant subsystems such as heat transfer studies on boiler circulation
efficiency improvements of boiler subsystems product improvements/ enhancements and setting up test facilities for research studies. He has published a number of technical papers on MHD power generation and heat transfer studies in various national and international journals. He has more than 25 patents and copyrights on products development related to power boilers. He has won BHEL’S gold medal for product development for Smart Wall Blowing system. K. Nandakumar
Supercritical water cooled reactor (SCWR) is one of the six types of Generation IV reactor in the international use. For supercritical water cooled reactor, the supercritical water has many peculiar properties near th...
详细信息
Mg–Zn–Mn-based alloys have received considerable attention because of their high creep resistance, strength,and good corrosion resistance. The alloying element Mn in Mg–Zn-based alloys is commonly less than 1 wt%. ...
详细信息
Mg–Zn–Mn-based alloys have received considerable attention because of their high creep resistance, strength,and good corrosion resistance. The alloying element Mn in Mg–Zn-based alloys is commonly less than 1 wt%. In the present study, the effect of high Mn content(1 wt% and 2 wt%) on the microstructures and mechanical properties of Mg–2Zn–0.3Sr extruded alloy was investigated. The results revealed that the high Mn content significantly increased the ultimate tensile strength, tensile yield strength, compress yield strength, and yield asymmetry of the alloy without affecting its ductility. The dynamically recrystallized(DRXed) grains of Mg–2Zn–0.3Sr were remarkably refined because of the large amount of fine Mn precipitates in the homogenized alloy. The improved strengths were mainly attributed to the fine DRXed grains according to the Hall–Petch effect and to the large amount of spherical and < 0001 > Mn precipitates through the precipitation and dispersion strengthening. The fine DRXed grains and numerous Mn precipitates effectively suppressed the extension twining, substantially enhanced the compress yield strength, and resulted in improved anisotropy.
暂无评论