Thermal characteristics during startup of CSR1000 are directly related to the security of supercritical water reactors. The heat transfer model during power-raising phase is built according to the sliding pressure mod...
详细信息
Simultaneous processes such as parallel turningor milling offer great opportunities for more efficientmanufacturing because of their higher material removalrates. To maximize their advantages, chatter suppressiontechn...
详细信息
Simultaneous processes such as parallel turningor milling offer great opportunities for more efficientmanufacturing because of their higher material removalrates. To maximize their advantages, chatter suppressiontechnologies for simultaneous processes must be devel-oped. In this study, we constructed an automatic chattersuppression system with optimal pitch control for shared-surface parallel turning with rigid tools and a flexibleworkpiece, integrating in-process chatter monitoring basedon the cutting force estimation. The pitch angle betweentwo tools is tuned adaptively in a position control system inaccordance with the chatter frequency at a certain spindlespeed, in a similar manner as the design methodology forvariable-pitch cutters. The cutting force is estimatedwithout using an additional external sensor by employing amulti-encoder-based disturbance observer. In addition, thechatter frequency is measured during the process by per-forming a low-computational-load spectrum analysis at acertain frequency range, which makes it possible to cal-culate the power spectrum density in the control system ofthe machine tool. Thus, the constructed system for automatic chatter suppression does not require any addi-tional equipment.
Stress intensity factors(SIFs) due to thermal-mechanical load has been established by using weight function method. Two reference stress states sere used to determine the coefficients in the weight function. Results w...
Stress intensity factors(SIFs) due to thermal-mechanical load has been established by using weight function method. Two reference stress states sere used to determine the coefficients in the weight function. Results were evaluated by using data from literature and show a good agreement between them. So, the SIFs can be determined quickly using the weight function obtained when cracks subjected to arbitrary loads, and presented method can be used for probabilistic fracture mechanics analysis. A probabilistic methodology considering Monte-Carlo with neural network (MCNN) has been developed. The results indicate that an accurate probabilistic characteristic of the KI can be obtained by using the developed method. The probability of failure increases with the increasing of loads, and the relationship between is nonlinear.
In this paper, Eulerian two-fluid model coupled with extended wall boiling model is used to simulate the subcooled boiling flow in PSBT subchannel test. Improved sub-models are used to describe the heat flux distribut...
详细信息
Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing ma...
Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing machine (MTS). Test data of material's mechanical behavior including uniaxial tension, low cycle fatigue (LCF), threshold value of stress intensity factor (SIF) range, fatigue crack growth (FCG), and fracture toughness is generated and given for further study. It is worth noting that the model in predicting FCG of material from LCF parameters is verified and discussed.
Supercritical water cooled reactor (SCWR) is one of the six types of Generation IV reactor in the international use. For supercritical water cooled reactor, the supercritical water has many peculiar properties near th...
详细信息
Mg–Zn–Mn-based alloys have received considerable attention because of their high creep resistance, strength,and good corrosion resistance. The alloying element Mn in Mg–Zn-based alloys is commonly less than 1 wt%. ...
详细信息
Mg–Zn–Mn-based alloys have received considerable attention because of their high creep resistance, strength,and good corrosion resistance. The alloying element Mn in Mg–Zn-based alloys is commonly less than 1 wt%. In the present study, the effect of high Mn content(1 wt% and 2 wt%) on the microstructures and mechanical properties of Mg–2Zn–0.3Sr extruded alloy was investigated. The results revealed that the high Mn content significantly increased the ultimate tensile strength, tensile yield strength, compress yield strength, and yield asymmetry of the alloy without affecting its ductility. The dynamically recrystallized(DRXed) grains of Mg–2Zn–0.3Sr were remarkably refined because of the large amount of fine Mn precipitates in the homogenized alloy. The improved strengths were mainly attributed to the fine DRXed grains according to the Hall–Petch effect and to the large amount of spherical and < 0001 > Mn precipitates through the precipitation and dispersion strengthening. The fine DRXed grains and numerous Mn precipitates effectively suppressed the extension twining, substantially enhanced the compress yield strength, and resulted in improved anisotropy.
暂无评论