In 2022, there are 1,524 flood events out of a total of 3,531 disasters occurring in Indonesia. East Kalimantan Province ranked 20th among the 35 provinces in Indonesia with 28 flood occurrences in 2022, resulting in ...
详细信息
In this paper we consider the filtering problem associated to partially observed McKean-Vlasov stochastic differential equations (SDEs). The model consists of data that are observed at regular and discrete times and t...
详细信息
Bacteria are microscopic organisms that can be found in many environments. They are abundant and have many roles in our life. Studying bacteria is essential so that we can identify the bacteria that are needed for man...
Bacteria are microscopic organisms that can be found in many environments. They are abundant and have many roles in our life. Studying bacteria is essential so that we can identify the bacteria that are needed for many industrial applications. However, the main problem is that majority of the bacteria are unculturable, hampering the exploration of bacteria from different environments. Metagenomics approach which employs Next Generation Sequencing technology could help study bacteria by utilizing 16S rRNA marker gene. This study aims to demonstrate data mining and bioinformatics approaches to analyze 16S rRNA sequencing data. The raw sequencing data of 16S rRNA was collected from biological database. Then, the data were trimmed, denoised, and clustered to generate Amplicon Sequence Variants (ASVs). Diversity (alpha and beta) and taxonomic analyses were then conducted to elucidate the bacterial diversity and taxonomic profile of ASVs. The results of this work showed that Shannon and PD indices in China's hot spring were higher than Singapore and the USA. Furthermore, a significant difference was observed in the PD index. The unweighted UniFrac distance also showed there was a significant difference of the bacterial communities between the three locations. In addition, the taxonomic investigation unveiled prevalent bacterial groups in the ecosystem, namely Proteobacteria, Chloroflexi, Cyanobacteria, and Crenarchaeota. The research outcomes have the potential to serve as a foundational resource for subsequent bacterial metagenomic research, particularly the hot spring environment.
The ability of Convolutional Neural Networks (CNNs) to accurately discriminate between normal and tumorous brain tissues has been promising. The review focuses on the different CNN models, pre-processing methods, data...
The ability of Convolutional Neural Networks (CNNs) to accurately discriminate between normal and tumorous brain tissues has been promising. The review focuses on the different CNN models, pre-processing methods, data augmentation, and Transfer Learning (TL) strategies used in this research. This Systematic Literature Review (SLR) collected the data from Google Scholar. The results of this study indicate that open-source datasets from Kaggle and Brain MRI Images for Brain Tumor Detection are the most used datasets. However, limited data and imbalanced class problems remain common challenges across various datasets. To overcome those challenges, using a larger dataset, oversampling, Generative Adversarial Network (GAN), federated learning, and Self-Supervised Learning (SSL) to handle the imbalance are the potential solution. Additionally, popular CNN architectures for brain tumor classification extensively use pre-trained models such as VGG16, VGG19, DenseNet121, DenseNet201, GoogleNet, ResNet-50, and Inception-v3. TL strategies are preferred, allowing CNNs to leverage knowledge from large datasets, improving generalization even with limited labeled data.
Cervical cancer has been known as one of the most prevalent medical disorders globally and a leading cause of death. Early detection, particularly through Pap tests, plays a vital role in its prevention. Previous stud...
Cervical cancer has been known as one of the most prevalent medical disorders globally and a leading cause of death. Early detection, particularly through Pap tests, plays a vital role in its prevention. Previous studies have leveraged machine learning and deep learning techniques to classify the medical images obtained from Pap tests. In this study, a Systematic Literature Review methodology was used to examine 15 relevant papers that have been filtered from queries to Google Scholar which have gone through 4 stages of filtering that include: identification, screening, eligibility, and inclusion. This study addresses two research questions regarding the datasets and deep learning techniques for classifying pap smear images in recent years. The performance of the models was analyzed and potential areas for improvements are suggested. The findings of this study reveal that the Herlev University Hospital and SIPaKMed datasets are the most used. The methodologies used by researchers range from machine learning techniques, transfer learning using Convolutional Neural Networks, and utilize state-of-the-art models with novel optimizing methodology. While there are exciting opportunities in the field, challenges include model generalization and interpretability.
Medical imaging abnormality detection is challenging, but deep learning approaches have shown promise. This paper reviews the current state of the art in deep learning approaches for detecting abnormalities in chest m...
Medical imaging abnormality detection is challenging, but deep learning approaches have shown promise. This paper reviews the current state of the art in deep learning approaches for detecting abnormalities in chest medical imaging. To discover the trends, opportunities, and challenges associated with this field, 18 studies were selected from Google Scholar based on their titles, abstracts, and contents for extensive review to answer two research questions. The study found that the National Institutes of Health (NIH) Chest X-ray 14 dataset is the most used dataset for this task. Most research uses a single-modal approach, considering only image data as input, with X-ray being the more popular instrument. There are 8 out of 18 studies leverage the transfer learning approach, with ResN et50 being the most popular network. MobileNetV2 has demonstrated competitive results compared to more robust networks. Preprocessing techniques such as image enhancement and data augmentation are leveraged by 61.1 % of the reviewed studies and are shown to improve model performance.
This systematic literature review explores the application of transformer models in early detection of human depression, encompassing text, audio, and video data modalities. Transformer architectures, notably BERT for...
This systematic literature review explores the application of transformer models in early detection of human depression, encompassing text, audio, and video data modalities. Transformer architectures, notably BERT for text, have proven adept at capturing crucial contextual and linguistic patterns associated with depression. For audio and video data, hybrid approaches that combine transformer models with other architectures are prevalent. Key features considered include eye gaze, head pose, facial muscle movements, and audio characteristics such as MFCC and Log-mel Spectrogram, along with text embeddings. Performance comparisons underscore the superiority of text-based data in consistently delivering the most promising results, followed by audio and video modalities when utilizing transformer models. The fusion of multiple modalities emerges as an effective strategy for enhancing predictive accuracy, with the amalgamation of audio, video, and text data yielding the most precise outcomes. However, it is noteworthy that unimodal approaches also exhibit potential, with text data exhibiting superior performance over audio and video data. Nevertheless, several challenges persist in this research domain, including imbalanced datasets, the limited availability of comprehensive and diverse samples, and the inherent complexities in interpreting visual cues. Addressing these challenges remains imperative for the continued advancement of depression detection using transformer-based models across various modalities.
Major Depressive Disorder (MDD) is a prevalent mental disorder, affecting a significant number of individuals, with estimates reaching 300 million cases worldwide. Currently, the diagnosis of this condition relies hea...
Major Depressive Disorder (MDD) is a prevalent mental disorder, affecting a significant number of individuals, with estimates reaching 300 million cases worldwide. Currently, the diagnosis of this condition relies heavily on subjective assessments based on the experience of medical professionals. Therefore, researchers have turned to deep learning models to explore the detection of depression. The objective of this review is to gather information on detecting depression based on facial expressions in videos using deep learning techniques. Overall, this research found that RNN models achieved 7.22 MAE for AVEC2014. LSTM models produced 4.83 MAE for DAIC-WOZ, while GRU models achieved an accuracy of 89.77% for DAIC-WOZ. Features like Facial Action Units (FAU), eye gaze, and landmarks show great potential and need to be further analyzed to improve results. Analysis can include applying feature engineering techniques. Aggregation methods, such as mean calculation, are recommended as effective approaches for data processing. This Systematic Literature Review found that facial expressions do have relevant patterns related to MDD.
The increasing complexity of modern network environments presents formidable challenges to Intrusion Detection Systems (IDS) in effectively mitigating cyber-attacks. Recent advancements in IDS research, integrating Ex...
详细信息
The increasing complexity of modern network environments presents formidable challenges to Intrusion Detection Systems (IDS) in effectively mitigating cyber-attacks. Recent advancements in IDS research, integrating Explainable AI (XAI) methodologies, have led to notable improvements in system performance via precise feature selection. However, a thorough understanding of cyber-attacks requires inherently explainable decision-making processes within IDS. In this paper, we present the Interpretable Generalization Mechanism (IG), poised to revolutionize IDS capabilities. IG discerns coherent patterns, making it interpretable in distinguishing between normal and anomalous network traffic. Further, the synthesis of coherent patterns sheds light on intricate intrusion pathways, providing essential insights for cybersecurity forensics. By experiments with real-world datasets NSL-KDD, UNSW-NB15, and UKM-IDS20, IG is accurate even at a low ratio of training-to-test. With 10%-to-90%, IG achieves Precision (PRE)=0.93, Recall (REC)=0.94, and Area Under Curve (AUC)=0.94 in NSL-KDD;PRE=0.98, REC=0.99, and AUC=0.99 in UNSW-NB15;and PRE=0.98, REC=0.98, and AUC=0.99 in UKM-IDS20. Notably, in UNSW-NB15, IG achieves REC=1.0 and at least PRE=0.98 since 40%-to-60%;in UKM-IDS20, IG achieves REC=1.0 and at least PRE=0.88 since 20%-to-80%. Importantly, in UKM-IDS20, IG successfully identifies all three anomalous instances without prior exposure, demonstrating its generalization capabilities. These results and inferences are reproducible. In sum, IG showcases superior generalization by consistently performing well across diverse datasets and training-to-test ratios (from 10%-to-90% to 90%-to-10%), and excels in identifying novel anomalies without prior exposure. Its interpretability is enhanced by coherent evidence that accurately distinguishes both normal and anomalous activities, significantly improving detection accuracy and reducing false alarms, thereby strengthening IDS reliability an
Tropical disease is one of the infectious diseases that affect Indonesia. Many people die because of tropical diseases, such as dengue hemorrhagic fever (DHF), chikungunya, leprosy, lymphatic, and filariasis. The Indo...
详细信息
暂无评论