咨询与建议

限定检索结果

文献类型

  • 1,374 篇 期刊文献
  • 536 篇 会议
  • 4 册 图书

馆藏范围

  • 1,914 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 939 篇 工学
    • 490 篇 计算机科学与技术...
    • 416 篇 软件工程
    • 184 篇 生物医学工程(可授...
    • 172 篇 生物工程
    • 157 篇 信息与通信工程
    • 121 篇 电气工程
    • 90 篇 控制科学与工程
    • 87 篇 化学工程与技术
    • 86 篇 光学工程
    • 83 篇 电子科学与技术(可...
    • 52 篇 材料科学与工程(可...
    • 51 篇 动力工程及工程热...
    • 48 篇 仪器科学与技术
    • 48 篇 环境科学与工程(可...
    • 45 篇 机械工程
  • 849 篇 理学
    • 285 篇 生物学
    • 283 篇 数学
    • 255 篇 物理学
    • 173 篇 统计学(可授理学、...
    • 112 篇 化学
    • 83 篇 地球物理学
    • 45 篇 系统科学
    • 42 篇 大气科学
  • 378 篇 医学
    • 296 篇 临床医学
    • 214 篇 基础医学(可授医学...
    • 105 篇 公共卫生与预防医...
    • 94 篇 药学(可授医学、理...
  • 246 篇 管理学
    • 128 篇 管理科学与工程(可...
    • 115 篇 图书情报与档案管...
    • 83 篇 工商管理
  • 75 篇 农学
  • 40 篇 教育学
  • 39 篇 经济学
  • 39 篇 法学
  • 3 篇 文学
  • 1 篇 哲学
  • 1 篇 艺术学

主题

  • 66 篇 machine learning
  • 52 篇 deep learning
  • 34 篇 predictive model...
  • 34 篇 accuracy
  • 27 篇 data models
  • 23 篇 training
  • 21 篇 covid-19
  • 21 篇 computational mo...
  • 19 篇 convolutional ne...
  • 16 篇 support vector m...
  • 16 篇 data mining
  • 16 篇 semantics
  • 15 篇 diseases
  • 14 篇 analytical model...
  • 14 篇 feature extracti...
  • 14 篇 social networkin...
  • 13 篇 bioinformatics
  • 13 篇 forecasting
  • 12 篇 transfer learnin...
  • 12 篇 big data

机构

  • 57 篇 bioinformatics a...
  • 47 篇 bioinformatics a...
  • 32 篇 computer science...
  • 32 篇 computer science...
  • 30 篇 computer science...
  • 28 篇 bioinformatics a...
  • 27 篇 department of ph...
  • 23 篇 kavli institute ...
  • 23 篇 instituto de ast...
  • 23 篇 steward observat...
  • 23 篇 program in appli...
  • 23 篇 data science ins...
  • 22 篇 california insti...
  • 22 篇 national astrono...
  • 21 篇 department of ph...
  • 21 篇 shanghai astrono...
  • 21 篇 computer science...
  • 20 篇 perimeter instit...
  • 20 篇 computer science...
  • 19 篇 wits centre for ...

作者

  • 119 篇 bens pardamean
  • 98 篇 pardamean bens
  • 40 篇 masuda naoki
  • 36 篇 chan chi-kwan
  • 25 篇 broderick avery ...
  • 25 篇 mahmood faisal
  • 23 篇 christian pierre
  • 23 篇 alam ahmad hiday...
  • 22 篇 gurwell mark
  • 22 篇 haggard daryl
  • 22 篇 fromm christian ...
  • 22 篇 hidayat alam ahm...
  • 22 篇 blackburn lindy
  • 21 篇 james david j.
  • 21 篇 chael andrew
  • 21 篇 bremer michael
  • 21 篇 friberg per
  • 21 篇 bronzwaer thomas
  • 21 篇 fish vincent l.
  • 21 篇 tjeng wawan ceng...

语言

  • 1,802 篇 英文
  • 97 篇 其他
  • 12 篇 中文
  • 4 篇 朝鲜文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 斯洛文尼亚文
检索条件"机构=Science in Data Science Program"
1914 条 记 录,以下是71-80 订阅
排序:
Enhanced Performance and data Privacy in Lung Nodule Classification via Federated Deep Learning Approach  24
Enhanced Performance and Data Privacy in Lung Nodule Classif...
收藏 引用
2024 7th International Conference on Healthcare Service Management, ICHSM 2024
作者: Nguyen, Duc-Khanh Li, Ai-Hsien Adam Lai, Yen-Jun Chiu, Yen-Ling Phan, Dinh-Van Chien, Ting-Ying Chan, Chien-Lung Department of Information Management Yuan Ze University Taoyuan Taiwan Department of Statistics and Informatics University of Economics The University of Danang Danang Viet Nam Division of Cardiology Far Eastern Memorial Hospital New Taipei Taiwan Graduate Program in Biomedical Informatics Yuan Ze University Taoyuan Taiwan Department of Radiology Far Eastern Memorial Hospital New Taipei Taiwan Graduate Institute of Medicine and Graduate Program in Biomedical Informatics Yuan Ze University Taoyuan Taiwan Department of Medical Research Far Eastern Memorial Hospital New Taipei Taiwan Department of Computer Science and Engineering Yuan Ze University Taoyuan Taiwan ZDT Group- YZU Joint Research and Development Center for Big Data Taoyuan Taiwan Yuan Ze University Taoyuan Taiwan
This study explores the feasibility of deep learning for classifying nodule neoplasms, analyzing their performance on two openly available datasets, LUNGx SPIE, and LIDC-IDRI. These datasets offer valuable diversity i... 详细信息
来源: 评论
Respiratory syncytial virus vaccine effectiveness among US veterans, September, 2023 to March, 2024: a target trial emulation study
收藏 引用
The Lancet Infectious Diseases 2025年 第6期25卷 625-633页
作者: Bajema, Kristina L Yan, Lei Li, Yuli Argraves, Stephanie Rajeevan, Nallakkandi Fox, Alexandra Vergun, Robert Berry, Kristin Bui, David Huang, Yuan Lin, Hung-Mo Hynes, Denise M Lucero-Obusan, Cynthia Schirmer, Patricia Cunningham, Francesca Huang, Grant D Aslan, Mihaela Ioannou, George N Veterans Affairs Portland Health Care System Portland OR United States Division of Infectious Diseases Department of Medicine Oregon Health & Science University Portland OR United States Veterans Affairs Cooperative Studies Program Clinical Epidemiology Research Center Veterans Affairs Connecticut Health Care System West Haven CT United States Department of Biostatistics Yale School of Public Health New Haven CT United States Biomedical Informatics & Data Science Yale School of Medicine New Haven CT United States Department of Internal Medicine Yale School of Medicine New Haven CT United States Seattle Epidemiologic Research and Information Center Veterans Affairs Puget Sound Health Care System Seattle WA United States Research and Development Veterans Affairs Puget Sound Health Care System Seattle WA United States Center of Innovation to Improve Veteran Involvement in Care Veterans Affairs Portland Health Care System Portland OR United States Health Management and Policy College of Health Oregon State University Corvallis OR United States Health Data and Informatics Program Center for Quantitative Life Sciences Oregon State University Corvallis OR United States Public Health National Program Office Veterans Health Administration Palo Alto CA United States Public Health National Program Office Veterans Health Administration Washington DC United States Veterans Affairs Center for Medication Safety—Pharmacy Benefit Management Services Hines IL United States Office of Research and Development Veterans Health Administration Washington DC United States Division of Gastroenterology Veterans Affairs Puget Sound Health Care System and University of Washington Seattle WA United States
Background: New respiratory syncytial virus (RSV) vaccines have been approved in the USA for the prevention of RSV-associated lower respiratory tract disease in adults aged 60 years and older. Information on the real-...
来源: 评论
Improved LSTM hyperparameters alongside sentiment walk-forward validation for time series prediction
收藏 引用
Journal of Open Innovation: Technology, Market, and Complexity 2025年 第1期11卷
作者: Wahyuddin, Eko Putra Caraka, Rezzy Eko Kurniawan, Robert Caesarendra, Wahyu Gio, Prana Ugiana Pardamean, Bens Department of Statistical Computing Politeknik Statistika STIS Jakarta 13330 Indonesia Statistics Indonesia (BPS) Jl. Dr Sutomo 6-8 Jakarta Indonesia School of Economics and Business Telkom University Bandung 40257 Indonesia Research Center for Data and Information Sciences Research Organization for Electronics and Informatics National Research and Innovation Agency (BRIN) Bandung 40135 Indonesia Faculty of Integrated Technologies Universiti Brunei Darussalam Gadong BE1410 Brunei Darussalam Department of Mathematics Universitas Sumatera Utara Medan 20155 Indonesia Bioinformatics and Data Science Research Centre Bina Nusantara University DKI Jakarta 11480 Indonesia Computer Science Department BINUS Graduate Program Master of Computer Science Program Bina Nusantara University DKI Jakarta 11480 Indonesia
This study aims to address the common issue of biased estimation errors in time series modeling by analyzing the error in locating ideal hyperparameters and defining appropriate validation methods. Specifically, it fo... 详细信息
来源: 评论
GAITGen: Disentangled Motion-Pathology Impaired Gait Generative Model – Bringing Motion Generation to the Clinical Domain
arXiv
收藏 引用
arXiv 2025年
作者: Adeli, Vida Mehraban, Soroush Mirmehdi, Majid Whone, Alan Filtjens, Benjamin Dadashzadeh, Amirhossein Fasano, Alfonso Iaboni, Andrea Taati, Babak University of Toronto Computer Science Department Canada Vector Institute Canada KITE Research Institute UHN Canada University of Toronto Institute of Biomedical Engineering Canada University of Bristol School of Computer Science United Kingdom University of Bristol Translational Health Science United Kingdom University of Toronto Data Sciences Institute Canada University of Toronto Department of Medicine Division of Neurology Canada Krembil Research Institute UHN Canada Edmond J. Safra Program in Parkinson’s Disease UHN Canada University of Toronto Department of Psychiatry Canada Centre for Mental Health UHN Canada
Gait analysis is crucial for the diagnosis and monitoring of movement disorders like Parkinson’s Disease. While computer vision models have shown potential for objectively evaluating parkinsonian gait, their effectiv... 详细信息
来源: 评论
Conditional Generative Modeling for Amorphous Multi-Element Materials
arXiv
收藏 引用
arXiv 2025年
作者: Li, Honglin Liu, Chuhao Guo, Yongfeng Luo, Xiaoshan Chen, Yijie Liu, Guangsheng Li, Yu Wang, Ruoyu Wang, Zhenyu Wu, Jianzhuo Ma, Cheng Xie, Zhuohang Lv, Jian Ding, Yufei Zhang, Huabin Luo, Jian Zhong, Zhicheng Li, Mufan Wang, Yanchao Li, Wan-Lu Key Laboratory of Material Simulation Methods and Software Ministry of Education College of Physics Jilin University Changchun China Aiiso Yufeng Li Family Department of Chemical and Nano Engineering University of California La Jolla San DiegoCA United States Institute of Molecular Engineering Plus College of Chemistry Fuzhou University Fuzhou China College of Chemistry and Molecular Engineering Peking University Beijing China School of Physics Nankai University Tianjin China Institute of Modern Physics Fudan University Shanghai China Program in Materials Science and Engineering University of California La Jolla San DiegoCA United States School of Artificial Intelligence and Data Science University of Science and Technology of China Hefei230026 China Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou215123 China International Center of Future Science Jilin University Changchun China Department of Computer Science and Engineering University of California La Jolla San DiegoCA United States Center for Renewable Energy and Storage Technologies Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal Saudi Arabia Suzhou Lab Suzhou215123 China
Amorphous multi-element materials offer unprecedented tunability in composition and properties, yet their rational design remains challenging due to the lack of predictive structure-property relationships and the vast... 详细信息
来源: 评论
ProHap Explorer: Visualizing Haplotypes in Proteogenomic datasets
arXiv
收藏 引用
arXiv 2025年
作者: Vašíček, Jakub Skiadopoulou, Dafni Kuznetsova, Ksenia G. Käll, Lukas Vaudel, Marc Bruckner, Stefan Mohn Center for Diabetes Precision Medicine Department of Clinical Science University of Bergen Bergen Norway Computational Biology Unit Department of Informatics University of Bergen Bergen Norway Metabolism Program Broad Institute of MIT and Harvard CambridgeMA United States Science for Life Laboratory Department of Gene Technology KTH - Royal Institute of Technology Stockholm Sweden Department of Genetics and Bioinformatics Health Data and Digitalization Norwegian Institute of Public Health Oslo Norway Institute for Visual and Analytic Computing University of Rostock Rostock Germany
In mass spectrometry-based proteomics, experts usually project data onto a single set of reference sequences, overlooking the influence of common haplotypes (combinations of genetic variants inherited together from a ... 详细信息
来源: 评论
Evaluating masked self-supervised learning frameworks for 3D dental model segmentation tasks
收藏 引用
Scientific Reports 2025年 第1期15卷 1-15页
作者: Krenmayr, Lucas von Schwerin, Reinhold Schaudt, Daniel Riedel, Pascal Hafner, Alexander Geserick, Marc Cooperative Doctoral Program for Data Science and Analytics University of Ulm Ulm 89081 Germany Department of Computer Science University of Applied Sciences Ulm 89081 Germany smyl tp GmbH Ulm 89073 Germany
The application of deep learning using dental models is crucial for automated computer-aided treatment planning. However, developing highly accurate models requires a substantial amount of accurately labeled data. Obt...
来源: 评论
Testing the Inference Accuracy of Accelerator-Friendly Approximate Phylogeny Tracking
Testing the Inference Accuracy of Accelerator-Friendly Appro...
收藏 引用
Computational Intelligence in Artificial Life and Cooperative Intelligent Systems (ALIFE-CIS), IEEE Symposium on
作者: Matthew Andres Moreno Anika Ranjan Emily Dolson Luis Zaman Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor United States Center for the Study of Complex Systems University of Michigan Ann Arbor United States Michigan Institute for Data and AI in Society University of Michigan Ann Arbor United States Undergraduate Research Opportunities Program University of Michigan Ann Arbor United States Department of Computer Science and Engineering Michigan State University East Lansing United States Program in Ecology Evolution and Behavior Michigan State University East Lansing United States
Computer simulations are an important tool for studying the mechanics of biological evolution. In particular, agent-based approaches provide an opportunity to collect high-quality records of ancestry relationships. Su... 详细信息
来源: 评论
Testing the Inference Accuracy of Accelerator-Friendly Approximate Phylogeny Tracking
Testing the Inference Accuracy of Accelerator-Friendly Appro...
收藏 引用
2025 IEEE Symposium on Computational Intelligence in Artificial Life and Cooperative Intelligent Systems, ALIFE-CIS 2025
作者: Moreno, Matthew Andres Ranjan, Anika Dolson, Emily Zaman, Luis University of Michigan Department of Ecology and Evolutionary Biology Ann Arbor United States Center for the Study of Complex Systems University of Michigan Ann Arbor United States Michigan Institute for Data and Ai in Society University of Michigan Ann Arbor United States Undergraduate Research Opportunities Program University of Michigan Ann Arbor United States Michigan State University Department of Computer Science and Engineering East Lansing United States Program in Ecology Evolution and Behavior Michigan State University East Lansing United States
Computer simulations are an important tool for studying the mechanics of biological evolution. In particular, agent-based approaches provide an opportunity to collect high-quality records of ancestry relationships. Su... 详细信息
来源: 评论
A Bayesian-based approach for extracting the pion charge radius from electron-electron scattering data
收藏 引用
Chinese Physics C 2021年 第8期45卷 12-27页
作者: Alam A Hidayat Bens Pardamean Bioinformatics and Data Science Research Center Bina Nusantara UniversityJakarta 11480Indonesia Computer Science Department BINUS Graduate Program-Master of Computer ScienceBina Nusantara UniversityJakarta 11480Indonesia
In this study,we utilize a potentially versatile Bayesian parameter approach to compute the value of the pion charge radius and quantify its uncertainty from several experimental e^(+)e^(-) datasets for the pion vecto... 详细信息
来源: 评论