咨询与建议

限定检索结果

文献类型

  • 55 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 17 篇 计算机科学与技术...
    • 16 篇 信息与通信工程
    • 14 篇 软件工程
    • 12 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 5 篇 机械工程
    • 4 篇 电气工程
    • 4 篇 交通运输工程
    • 4 篇 生物工程
    • 3 篇 建筑学
    • 3 篇 航空宇航科学与技...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
    • 1 篇 力学(可授工学、理...
  • 25 篇 理学
    • 10 篇 数学
    • 7 篇 物理学
    • 4 篇 生物学
    • 4 篇 系统科学
    • 3 篇 化学
    • 2 篇 大气科学
    • 2 篇 地球物理学
    • 2 篇 地质学
    • 2 篇 统计学(可授理学、...
  • 9 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 3 篇 microwave antenn...
  • 3 篇 horn antennas
  • 3 篇 atmospheric mode...
  • 2 篇 polarization
  • 2 篇 simulation
  • 2 篇 cameras
  • 2 篇 bandwidth
  • 2 篇 aircraft
  • 2 篇 visualization
  • 2 篇 aerodynamics
  • 1 篇 global positioni...
  • 1 篇 conferences
  • 1 篇 edge-side simula...
  • 1 篇 runtime
  • 1 篇 scattering cente...
  • 1 篇 aircraft navigat...
  • 1 篇 astronomical cha...
  • 1 篇 etching
  • 1 篇 requirement clas...
  • 1 篇 diffraction

机构

  • 29 篇 science and tech...
  • 10 篇 science and tech...
  • 7 篇 beijing simulati...
  • 6 篇 beihang universi...
  • 5 篇 key laboratory o...
  • 4 篇 the science and ...
  • 4 篇 the national key...
  • 3 篇 harbin engineeri...
  • 3 篇 the key laborato...
  • 3 篇 beijing institut...
  • 3 篇 college of infor...
  • 2 篇 southwest techno...
  • 2 篇 state key labora...
  • 2 篇 education depart...
  • 2 篇 school of comput...
  • 2 篇 key laboratory o...
  • 2 篇 shanghai aerospa...
  • 2 篇 key laboratory o...
  • 2 篇 school of comput...
  • 2 篇 guangxi guilin

作者

  • 14 篇 ma jing
  • 12 篇 jing ma
  • 10 篇 lin peng
  • 8 篇 bin shi
  • 6 篇 peng lin
  • 4 篇 lu yong-han
  • 4 篇 yong-han lu
  • 4 篇 zhang lianyi
  • 4 篇 zhang han
  • 3 篇 qing wang
  • 3 篇 qing duzheng
  • 3 篇 qian depei
  • 3 篇 huang jia-jia
  • 3 篇 zhong-bo zhu
  • 3 篇 min zhou
  • 3 篇 jia-jia huang
  • 3 篇 kewei zhong
  • 3 篇 han zhang
  • 3 篇 zhi-hao li
  • 3 篇 shi bin

语言

  • 61 篇 英文
检索条件"机构=Secience and Technology on Special System Simulation Laboratory"
61 条 记 录,以下是1-10 订阅
排序:
Structure characteristic-aware pruning strategy for convolutional neural networks  21
Structure characteristic-aware pruning strategy for convolut...
收藏 引用
21st IEEE International Conference on High Performance Computing and Communications, 17th IEEE International Conference on Smart City and 5th IEEE International Conference on Data Science and systems, HPCC/SmartCity/DSS 2019
作者: Zuo, Peixuan Wang, Rui Fu, Xianya Yang, Hailong Liu, Yi Zhang, Lianyi Zhang, Han Qian, Depei BeiHang University Beijing China Secience and Technology on Special System Simulation Laboratory Beijing China Beijing Simulation Center Beijing China
Convolutional Neural Networks have received considerable attention over the past few years, and they are widely used in various fields. However, the computational complexity and excessive storage space caused by over-... 详细信息
来源: 评论
Scattering Center Modeling Using Adaptive Segmental Compressive Sampling
收藏 引用
Journal of Beijing Institute of technology 2017年 第4期26卷 484-493页
作者: Qifeng Li Kunyi Guo Jiaxin Wang Xinqing Sheng Tianshu Liu Center for Electromagnetic Simulation School of Information and ElectronicsBeijing Institute of Technology Science and Technology on Special System Simulation Laboratory Beijing Simulation Center
In order to deal with aliasing distortions of Doppler frequencies shown in time-frequency representation( TFR) with aspect undersampling,an approach using adaptive segmental compressive sampling according to the asp... 详细信息
来源: 评论
Research on Credibility Evaluation for Radio Frequency Guided Hardware-In-the-Loop simulation system  36
Research on Credibility Evaluation for Radio Frequency Guide...
收藏 引用
第36届中国控制会议
作者: Yuxiao Wang Tao Chao Chaolei Wang Songyan Wang Harbin Institute of Technology Science and Technology on Special System Simulation Laboratory Beijing Simulation Center
To ensure the effectiveness of the RF(Radio Frequency) guided HILS(Hardware-In-the-Loop simulationsystem,the credibility evaluation was *** present,most of the methods were applied in the case of the simulation ... 详细信息
来源: 评论
A Multi-Targets simulation Method Based on Single Channel
A Multi-Targets Simulation Method Based on Single Channel
收藏 引用
2023 International Conference on Electronic Information Engineering and Data Processing, EIEDP 2023
作者: Jing, Boda Jin, Congjun Song, Youbin Beijing Simulation Center Science and Technology on Special System Simulation Laboratory Beijing100854 China
The number of channels for radio frequency simulation system is very limited, and the traditional simulation method of one channel simulating one target is difficult to meet the demand of complex scene simulation. Thi... 详细信息
来源: 评论
Multiple Algorithms Against Multiple Hardware Architectures: Data-Driven Exploration on Deep Convolution Neural Network  16th
Multiple Algorithms Against Multiple Hardware Architectures:...
收藏 引用
16th IFIP WG 10.3 International Conference on Network and Parallel Computing, NPC 2019
作者: Xu, Chongyang Luan, Zhongzhi Gao, Lan Wang, Rui Zhang, Han Zhang, Lianyi Liu, Yi Qian, Depei Beihang University Beijing China Science and Technology on Special System Simulation Laboratory Beijing Simulation Center Beijing China
With the rapid development of deep learning (DL), various convolution neural network (CNN) models have been developed. Moreover, to execute different DL workloads efficiently, many accelerators have been proposed. To ... 详细信息
来源: 评论
Research on weapon system portfolio selection based on combat network modeling  11
Research on weapon system portfolio selection based on comba...
收藏 引用
11th Annual IEEE International systems Conference, SysCon 2017
作者: Cheng, Cheng Li, Jichao Zhao, Qingsong Jiang, Jiang Yu, Lixin Shang, Huilin College of Information System and Management National University of Defense Technology Changsha China Science and Technology on Special System Simulation Laboratory Beijing Simulation Center Beijing China
Joint operations and combat system-of-systems encounter have become major developing trends of modern warfare. Weapon system portfolio selection attracts much attention, because it is closely related to the production... 详细信息
来源: 评论
NASIL: Neural Network Architecture Searching for Incremental Learning in Image Classification  1
收藏 引用
11th International Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2020
作者: Fu, Xianya Li, Wenrui Chen, Qiurui Zhang, Lianyi Yang, Kai Qing, Duzheng Wang, Rui Beihang University Beijing China Science and Technology on Special System Simulation Laboratory Beijing Simulation Center Beijing100854 China
"Catastrophic forgetting" and scalability of tasks are two major challenges of incremental learning. Both of these issues were related to the insufficient capacity of machine learning model and the insuffici... 详细信息
来源: 评论
Pin-Tool based execution backtracking  13th
Pin-Tool based execution backtracking
收藏 引用
13th Conference on Advanced Computer Architecture, ACA 2020
作者: Wei, Shuangjian Ji, Weixing Chen, Qiurui Wang, Yizhuo Beijing Institute of Technology Beijing100081 China Science and Technology on Special System Simulation Laboratory Beijing Simulation Center Beijing100854 China
Checkpoint/restart is a common fault tolerant technique which periodically dump state to reliable storage and restart applications after failure. Most of existing checkpoint/restart implementations only handle volatil... 详细信息
来源: 评论
A generation algorithm of Latin hypercube sampling based on original sampling points  27
A generation algorithm of Latin hypercube sampling based on ...
收藏 引用
27th European Modeling and simulation Symposium, EMSS 2015
作者: Liu, Zhizhao Li, Wei Yang, Ming Xu, Jun Qing, Duzheng Control and Simulation Center Harbin Institute of Technology Harbin150080 China Science and Technology on Special System Simulation Laboratory Beijing Simulation Center Beijing100854 China
In order to utilize original sampling points as many as possible to construct a Latin Hypercube Sampling (LHS), a generation algorithm of LHS is proposed. The original sampling can be an arbitrary sampling and the new... 详细信息
来源: 评论
Full Polarization Radar Target Recognition Based on Ensemble Learning Algorithm  1
收藏 引用
19th Chinese Intelligent systems Conference, CISC 2023
作者: Yang, Zongkai Zhao, Jingcheng Li, Yanhan Xuan, Shiyang Zhang, Ke Song, Youbin Beihang University Beijing100083 China Science and Technology on Special System Simulation Laboratory Beijing Simulation Center Beijing100854 China
The polarization characteristic of radar targets is a significant research object in the fields of radar information processing and electronic countermeasures. The study aims to identify the targets by polarization in... 详细信息
来源: 评论