Medical data are subject to privacy regulations, which severely limit AI specialists who wish to construct decision support systems for medicine. Large amounts of this data are tabular, indicating that they are organi...
详细信息
This study addresses the critical aspect of data collection within Wireless Sensor Networks (WSNs), which consist of autonomous, compact sensor devices deployed to monitor environmental conditions. These networks have...
详细信息
This paper proposes an innovative decision support system based on sentiment analysis, specifically designed for the transportation sector. The system employs an aspect-based sentiment analysis approach, which accurat...
详细信息
The development of Decision Support systems (DSS) for several companies operating in sectors such as tourism, healthcare, or others, presents significant challenges due to the nature of their multi-component architect...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm ***,little attention has been paid to the ambiguous weather information implicit in AEFS **...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm ***,little attention has been paid to the ambiguous weather information implicit in AEFS *** this paper,a Fuzzy C-Means(FCM)clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by ***,a time series dataset is created in the time domain using AEFS *** AEFS-based weather is evaluated according to the time-series Membership Degree(MD)changes obtained by inputting this dataset into the ***,thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF ***,a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space ***,the rationality and reliability of the proposed method are verified by combining radar charts and expert *** results confirm that this method accurately characterizes the weather attributes and changes in the AEFS,and a negative distance-MD correlation is obtained for the first *** detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remain...
详细信息
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware *** this gap can provide valuable insights for enhancing cybersecurity *** numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware *** the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security *** study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows *** objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows *** the accuracy,efficiency,and suitability of each classifier for real-world malware detection *** the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and *** recommendations for selecting the most effective classifier for Windows malware detection based on empirical *** study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and *** data analysis involves understanding the dataset’s characteristics and identifying preprocessing *** preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for *** training utilizes various
The field of information security, in general, has seen shifts a traditional approach to an intelligence system. Moreover, an increasing of researchers to focus on propose intelligence systems and framework based on t...
详细信息
Automatic person identification (API) using human biometrics is essential and highly demanded compared to traditional API methods, where a person is automatically identified using his/her distinct characteristics incl...
详细信息
Automatic person identification (API) using human biometrics is essential and highly demanded compared to traditional API methods, where a person is automatically identified using his/her distinct characteristics including speech, fingerprint, iris, handwritten signatures, and others. The fusion of more than one human biometric produces bimodal and multimodal API systems that normally outperform single modality systems. This paper presents our work towards fusing speech and handwritten signatures for developing a bimodal API system, where fusion was conducted at the decision level due to the differences in the type and format of the features extracted. A data set is created that contains recordings of usernames and handwritten signatures of 100 persons (50 males and 50 females), where each person recorded his/her username 30 times and provided his/her handwritten signature 30 times. Consequently, a total of 3000 utterances and 3000 handwritten signatures were collected. The speech API used Mel-Frequency Cepstral Coefficients (MFCC) technique for features extraction and Vector Quantization (VQ) for features training and classification. On the other hand, the handwritten signatures API used global features for reflecting the structure of the hand signature image such as image area, pure height, pure width and signature height and the Multi-Layer Perceptron (MLP) architecture of Artificial Neural Network for features training and classification. Once the best matches for both the speech and the handwritten signatures API are produced, the fusion process takes place at decision level. It computes the difference between the two best matches for each modality and selects the modality of the maximum difference. Based on our experimental results, the bimodal API obtained an average recognition rate of 96.40%, whereas the speech API and the handwritten signatures API obtained average recognition rates of 92.60% and 75.20%, respectively. Therefore, the bimodal API system is a
To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric *** demand for environmentally friendly transportation may be ha...
详细信息
To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric *** demand for environmentally friendly transportation may be hampered by obstacles such as a restricted range and extended rates of *** establishment of urban charging infrastructure that includes both fast and ultra-fast terminals is essential to address this ***,the powering of these terminals presents challenges because of the high energy requirements,whichmay influence the quality of *** the maximum hourly capacity of each station based on its geographic location is necessary to arrive at an accurate estimation of the resources required for charging *** is vital to do an analysis of specific regional traffic patterns,such as road networks,route details,junction density,and economic zones,rather than making arbitrary conclusions about traffic *** vehicle traffic is simulated using this data and other variables,it is possible to detect limits in the design of the current traffic engineering ***,the binary graylag goose optimization(bGGO)algorithm is utilized for the purpose of feature ***,the graylag goose optimization(GGO)algorithm is utilized as a voting classifier as a decision algorithm to allocate demand to charging stations while taking into consideration the cost variable of traffic *** on the results of the analysis of variance(ANOVA),a comprehensive summary of the components that contribute to the observed variability in the dataset is *** results of the Wilcoxon Signed Rank Test compare the actual median accuracy values of several different algorithms,such as the voting GGO algorithm,the voting grey wolf optimization algorithm(GWO),the voting whale optimization algorithm(WOA),the voting particle swarm optimization(PSO),the voting firefly algorithm(FA),and the voting genetic algori
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable *** Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf ***,current DL me...
详细信息
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable *** Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf ***,current DL methods often require substantial computational resources,hindering their application on resource-constrained *** propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome *** Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for *** proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet *** specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato *** model could be used on mobile platforms because it is lightweight and designed with fewer *** farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.
暂无评论