咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 理学
    • 7 篇 生物学
    • 4 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
  • 10 篇 工学
    • 7 篇 计算机科学与技术...
    • 5 篇 软件工程
    • 4 篇 光学工程
    • 4 篇 生物医学工程(可授...
    • 4 篇 生物工程
    • 2 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 4 篇 医学
    • 4 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 医学技术(可授医学...
    • 1 篇 中西医结合
    • 1 篇 药学(可授医学、理...
    • 1 篇 特种医学
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 2 篇 embeddings
  • 1 篇 support vector m...
  • 1 篇 deconvolution
  • 1 篇 bridges
  • 1 篇 information anal...
  • 1 篇 magnetic resonan...
  • 1 篇 transfer learnin...
  • 1 篇 fmri
  • 1 篇 brain models
  • 1 篇 neuroimaging
  • 1 篇 face recognition
  • 1 篇 human behaviour
  • 1 篇 bold
  • 1 篇 brain imaging
  • 1 篇 blood susceptibi...
  • 1 篇 mri
  • 1 篇 covariance matri...
  • 1 篇 nonparametric mo...
  • 1 篇 decoding
  • 1 篇 cognitive neuros...

机构

  • 2 篇 university of gr...
  • 2 篇 section on funct...
  • 2 篇 wellcome trust c...
  • 2 篇 section on funct...
  • 2 篇 institute of cog...
  • 2 篇 section on learn...
  • 2 篇 section on funct...
  • 1 篇 département d’in...
  • 1 篇 the edmond and l...
  • 1 篇 department of cl...
  • 1 篇 department of me...
  • 1 篇 public health st...
  • 1 篇 department of ne...
  • 1 篇 department of he...
  • 1 篇 department of ve...
  • 1 篇 section on funct...
  • 1 篇 stroke branch na...
  • 1 篇 program in medic...
  • 1 篇 department of pe...
  • 1 篇 city university ...

作者

  • 4 篇 bandettini peter...
  • 3 篇 pereira francisc...
  • 2 篇 bandettini peter
  • 2 篇 mcclure patrick
  • 2 篇 hebart martin n.
  • 2 篇 gonzalez-castill...
  • 2 篇 chu carlton
  • 2 篇 zheng charles y.
  • 2 篇 thomas adam g.
  • 2 篇 ashburner john
  • 2 篇 baker chris i.
  • 2 篇 peter bandettini
  • 1 篇 marston nicholas...
  • 1 篇 ovbiagele bruce
  • 1 篇 peters annette
  • 1 篇 akinyemi rufus
  • 1 篇 nygaard marianne
  • 1 篇 shiping shao
  • 1 篇 stephen j frost
  • 1 篇 cho kelly

语言

  • 18 篇 英文
检索条件"机构=Section On Functional Imaging Methods"
18 条 记 录,以下是1-10 订阅
排序:
The positive-negative mode link between brain connectivity, demographics, and behavior: A pre-registered replication of Smith et al. (2015)
arXiv
收藏 引用
arXiv 2022年
作者: Goyal, Nikhil Moraczewski, Dustin Bandettini, Peter A. Finn, Emily S. Thomas, Adam G. Data Science and Sharing Team National Institute of Mental Health BethesdaMD United States Section on Functional Imaging Methods National Institute of Mental Health BethesdaMD United States Department of Psychological and Brain Sciences Dartmouth College HanoverNH United States
In mental health research, it has proven difficult to find measures of brain function that provide reliable indicators of mental health and well-being, including susceptibility to mental health disorders. Recently, a ... 详细信息
来源: 评论
Revealing interpretable object representations from human behavior  7
Revealing interpretable object representations from human be...
收藏 引用
7th International Conference on Learning Representations, ICLR 2019
作者: Zheng, Charles Y. Baker, Chris I. Pereira, Francisco Hebart, Martin N. Section on Functional Imaging Methods National Institute of Mental Health Section on Learning and Plasticity National Institute of Mental Health
To study how mental object representations are related to behavior, we estimated sparse, non-negative representations of objects using human behavioral judgments on images representative of 1,854 object categories. Th... 详细信息
来源: 评论
Correction to: The Haskins pediatric atlas: a magnetic-resonance-imaging-based pediatric template and atlas
收藏 引用
Pediatric radiology 2021年 第4期51卷 671-672页
作者: Peter J Molfese Daniel Glen Laura Mesite Robert W Cox Fumiko Hoeft Stephen J Frost W Einar Mencl Kenneth R Pugh Peter A Bandettini Haskins Laboratories 300 George St. Suite 900 New Haven CT 06511 USA. peter.molfese@nih.gov. Section on Functional Imaging Methods National Institutes of Mental Health National Institutes of Health Bethesda MD USA. peter.molfese@nih.gov. Scientific and Statistical Computing Core National Institutes of Mental Health National Institutes of Health Bethesda MD USA. Haskins Laboratories 300 George St. Suite 900 New Haven CT 06511 USA. Brain Imaging Research Center (BIRC) University of Connecticut Storrs CT USA. Section on Functional Imaging Methods National Institutes of Mental Health National Institutes of Health Bethesda MD USA.
A Correction to this paper has been published: https://***/10.1007/s00247-020-04958-w
来源: 评论
Revealing interpretable object representations from human behavior
arXiv
收藏 引用
arXiv 2019年
作者: Zheng, Charles Y. Pereira, Francisco Baker, Chris I. Hebart, Martin N. Section on Functional Imaging Methods National Institute of Mental Health Section on Learning and Plasticity National Institute of Mental Health
To study how mental object representations are related to behavior, we estimated sparse, non-negative representations of objects using human behavioral judgments on images representative of 1,854 object categories. Th... 详细信息
来源: 评论
A measure of reliability convergence to select and optimize cognitive tasks for individual differences research
收藏 引用
Communications psychology 2024年 第1期2卷 64页
作者: Jan Kadlec Catherine R Walsh Uri Sadé Ariel Amir Jesse Rissman Michal Ramot Department of Brain Sciences Weizmann Institute of Science Rehovot Israel. Department of Psychology University of California Los Angeles CA USA. Section on Functional Imaging Methods National Institute of Mental Health Bethesda MD USA. Faculty of Physics Weizmann Institute of Science Rehovot Israel. Department of Psychiatry and Biobehavioral Sciences University of California Los Angeles CA USA. Department of Brain Sciences Weizmann Institute of Science Rehovot Israel. michal.ramot@weizmann.ac.il.
Surging interest in individual differences has faced setbacks in light of recent replication crises in psychology, for example in brain-wide association studies exploring brain-behavior correlations. A crucial compone... 详细信息
来源: 评论
A temporal deconvolution algorithm for multiecho functional MRI  15
A temporal deconvolution algorithm for multiecho functional ...
收藏 引用
15th IEEE International Symposium on Biomedical imaging, ISBI 2018
作者: Gaudes, Cesar Caballero Bandettini, Peter A. Gonzalez-Castillo, Javier Basque Center on Cognition Brain and Language San Sebastian Spain Section on Functional Imaging Methods NIMH NIH BethesdaMD United States Functional MRI Core NIH BethesdaMD United States
This work introduces a novel method for the temporal deconvolution of the BOLD signal for multiecho functional MRI (fMRI) data: Multiecho Paradigm Free Mapping (ME-PFM). By solving an inverse problem with the Generali... 详细信息
来源: 评论
Correction to: Global surface features contribute to human haptic roughness estimations
收藏 引用
Experimental brain research 2022年 第4期240卷 1293页
作者: Huazhi Li Jiajia Yang Yinghua Yu Wu Wang Yulong Liu Mengni Zhou Qingqing Li Jingjing Yang Shiping Shao Satoshi Takahashi Yoshimichi Ejima Jinglong Wu Graduate School of Interdisciplinary Science and Engineering in Health Systems Okayama University 3-1-1 Tsushima-Naka Kita-ku Okayama 700-8530 Japan. Graduate School of Interdisciplinary Science and Engineering in Health Systems Okayama University 3-1-1 Tsushima-Naka Kita-ku Okayama 700-8530 Japan. yang@okayama-u.ac.jp. Section On Functional Imaging Methods National Institute of Mental Health Bethesda MD USA. yang@okayama-u.ac.jp. Section On Functional Imaging Methods National Institute of Mental Health Bethesda MD USA. School of Psychological and Cognitive Sciences Peking University Beijing China. Department of Teacher Education Wenzhou University Wenzhou China. School of Computer Science and Technology Changchun University of Science and Technology Changchun China. School of Social Welfare Yonsei University Seoul Korea. School of Mechatronical Engineering Beijing Institute of Technology Beijing China.
来源: 评论
Knowing what you know in brain segmentation using Bayesian deep neural networks
arXiv
收藏 引用
arXiv 2018年
作者: McClure, Patrick Rho, Nao Lee, John A. Kaczmarzyk, Jakub R. Zheng, Charles Ghosh, Satrajit S. Nielson, Dylan M. Thomas, Adam G. Bandettini, Peter Pereira, Francisco Machine Learning Team National Institute of Mental Health BethesdaMD United States Section on Functional Imaging Methods National Institute of Mental Health BethesdaMD United States Data Sharing and Science Team National Institute of Mental Health BethesdaMD United States McGovern Institute for Brain Research Massachusetts Institute of Technology CambridgeMA United States
In this paper, we describe a Bayesian deep neural network (DNN) for predicting FreeSurfer segmentations of structural MRI volumes, in minutes rather than hours. The network was trained and evaluated on a large dataset... 详细信息
来源: 评论
Extrapolating expected accuracies for large multi-class problems
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2018年 第1期19卷
作者: Charles Zheng Rakesh Achanta Yuval Benjamini Section on Functional Imaging Methods National Institute of Mental Health Bethesda MD Department of Statistics Stanford University Palo Alto CA Department of Statistics The Hebrew University of Jerusalem Jerusalem Israel
The difficulty of multi-class classification generally increases with the number of classes. Using data for a small set of the classes, can we predict how well the classifier scales as the number of classes increases?... 详细信息
来源: 评论
Quantum computing at the frontiers of biological sciences
arXiv
收藏 引用
arXiv 2019年
作者: Emani, Prashant S. Warrell, Jonathan Anticevic, Alan Bekiranov, Stefan Gandal, Michael McConnell, Michael J. Sapiro, Guillermo Aspuru-Guzik, Alán Baker, Justin Bastiani, Matteo McClure, Patrick Murray, John Sotiropoulos, Stamatios N. Taylor, Jacob Senthil, Geetha Lehner, Thomas Gerstein, Mark B. Harrow, Aram W. Program in Computational Biology and Bioinformatics Yale University New HavenCT06520 United States Department of Molecular Biophysics and Biochemistry Yale University New HavenCT06520 United States Yale School of Medicine Department of Psychiatry New HavenCT06511 United States University of Virginia School of Medicine Department of Biochemistry and Molecular Genetics CharlottesvilleVA22903 United States Department of Psychiatry Semel Institute David Geffen School of Medicine University of California–Los Angeles 695 Charles E. Young Drive South Los AngelesCA90095 United States Univ. of Virginia School of Medicine Department of Neuroscience CharlottesvilleVA22903 United States Department of Electrical and Computer Engineering Duke University DurhamNC27708 United States Department of Chemistry University of Toronto 80 St. George Street TorontoONM5S 3H6 Canada TorontoONM5S 1M1 Canada CIFAR Artificial Intelligence Research Chair Vector Institute TorontoONM5S 1M1 Canada Department of Computer Science University of Toronto 40 St. George Street TorontoONM5S 2E4 Canada Schizophrenia and Bipolar Disorder Program McLean Hospital BelmontMA02478 United States Department of Psychiatry Harvard Medical School BostonMA02114 United States Sir Peter Mansfield Imaging Centre School of Medicine University of Nottingham NottinghamNG7 2RD United Kingdom Machine Learning Team National Institute of Mental Health BethesdaMD20892 United States Section on Functional Imaging Methods National Institute of Mental Health BethesdaMD20892 United States Department of Psychiatry Yale University School of Medicine New HavenCT06511 United States Department of Physics Yale University New HavenCT06511 United States Joint Center for Quantum Information and Computer Science University of Maryland College ParkMD20742 United States National Institute of Standards and Technology GaithersburgMD20899 United States Office of Genomics Research Coordination N
The search for meaningful structure in biological data has relied on cutting-edge advances in computational technology and data science methods. However, challenges arise as we push the limits of scale and complexity ... 详细信息
来源: 评论