咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 2 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 信息与通信工程
    • 1 篇 土木工程
    • 1 篇 生物工程
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 生物学

主题

  • 3 篇 object detection
  • 2 篇 three-dimensiona...
  • 2 篇 accuracy
  • 2 篇 training
  • 1 篇 semantic segment...
  • 1 篇 deep learning
  • 1 篇 prototypes
  • 1 篇 codes
  • 1 篇 detectors
  • 1 篇 laser radar
  • 1 篇 computer vision
  • 1 篇 point cloud comp...

机构

  • 3 篇 fujian key labor...
  • 2 篇 section of visua...
  • 1 篇 section of visua...
  • 1 篇 section of visua...
  • 1 篇 department of co...
  • 1 篇 louisiana state ...
  • 1 篇 department of co...
  • 1 篇 section of visua...
  • 1 篇 division of elec...

作者

  • 3 篇 li xin
  • 2 篇 cheng wang
  • 2 篇 ravanbakhsh elha...
  • 2 篇 ramanujam j.
  • 2 篇 chenglu wen
  • 2 篇 xun huang
  • 2 篇 xin li
  • 2 篇 liang yongqing
  • 2 篇 shijia zhao
  • 2 篇 hai wu
  • 1 篇 zhao shijia
  • 1 篇 wen chenglu
  • 1 篇 wang cheng
  • 1 篇 niu cheng
  • 1 篇 qiming xia
  • 1 篇 huang xun
  • 1 篇 leyuan xing
  • 1 篇 wu hai
  • 1 篇 wei ye
  • 1 篇 jinhao deng

语言

  • 3 篇 英文
  • 2 篇 其他
检索条件"机构=Section of Visual Computing and Interactive Media"
5 条 记 录,以下是1-10 订阅
Commonsense Prototype for Outdoor Unsupervised 3D Object Detection
Commonsense Prototype for Outdoor Unsupervised 3D Object Det...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Hai Wu Shijia Zhao Xun Huang Chenglu Wen Xin Li Cheng Wang Fujian Key Laboratory of Sensing and Computing for Smart Cities Xiamen University Section of Visual Computing and Interactive Media Texas A&M University
The prevalent approaches of unsupervised 3D object de-tection follow cluster-based pseudo-label generation and iterative self-training processes. However, the challenge arises due to the sparsity of LiDAR scans, which... 详细信息
来源: 评论
Commonsense Prototype for Outdoor Unsupervised 3D Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Hai Zhao, Shijia Huang, Xun Wen, Chenglu Li, Xin Wang, Cheng Fujian Key Laboratory of Sensing and Computing for Smart Cities Xiamen University China Section of Visual Computing and Interactive Media Texas A&M University United States
The prevalent approaches of unsupervised 3D object detection follow cluster-based pseudo-label generation and iterative self-training processes. However, the challenge arises due to the sparsity of LiDAR scans, which ... 详细信息
来源: 评论
HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely-Supervised 3D Object Detection
HINTED: Hard Instance Enhanced Detector with Mixed-Density F...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Qiming Xia Wei Ye Hai Wu Shijia Zhao Leyuan Xing Xun Huang Jinhao Deng Xin Li Chenglu Wen Cheng Wang Fujian Key Laboratory of Sensing and Computing for Smart Cities Xiamen University Xiamen China Section of Visual Computing and Interactive Media Texas A&M University Texas USA
Current sparsely-supervised object detection methods largely depend on high threshold settings to derive high-quality pseudo labels from detector predictions. However, hard instances within point clouds frequently dis... 详细信息
来源: 评论
Enhancing Weakly Supervised Semantic Segmentation with Multi-modal Foundation Models: An End-to-End Approach
arXiv
收藏 引用
arXiv 2024年
作者: Ravanbakhsh, Elham Niu, Cheng Liang, Yongqing Ramanujam, J. Li, Xin Louisiana State University Baton RougeLA70803 United States Department of Computer Science & Engineering Texas A&M University College StationTX77843 United States Section of Visual Computing and Interactive Media Texas A&M University College StationTX77843 United States
Semantic segmentation is a core computer vision problem, but the high costs of data annotation have hindered its wide application. Weakly-Supervised Semantic Segmentation (WSSS) offers a cost-efficient workaround to e... 详细信息
来源: 评论
Deep Video Representation Learning: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Ravanbakhsh, Elham Liang, Yongqing Ramanujam, J. Li, Xin Division of Electrical & Computer Engineering Center for Computation & Technology Louisiana State University Baton RougeLA70803 United States Department of Computer Science and Engineering Texas A&M University College StationTX77843 United States Section of Visual Computing and Interactive Media Texas A&M University College StationTX77843 United States
This paper provides a review on representation learning for videos. We classify recent spatio-temporal feature learning methods for sequential visual data and compare their pros and cons for general video analysis. Bu... 详细信息
来源: 评论