咨询与建议

限定检索结果

文献类型

  • 38 篇 会议
  • 23 篇 期刊文献

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 41 篇 工学
    • 29 篇 计算机科学与技术...
    • 26 篇 软件工程
    • 13 篇 信息与通信工程
    • 13 篇 生物工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 4 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 控制科学与工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 电气工程
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
    • 1 篇 航空宇航科学与技...
  • 34 篇 理学
    • 17 篇 数学
    • 15 篇 生物学
    • 12 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 5 篇 化学
  • 8 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 4 篇 reinforcement le...
  • 2 篇 power demand
  • 2 篇 image enhancemen...
  • 2 篇 data privacy
  • 2 篇 generative adver...
  • 2 篇 functions
  • 2 篇 face recognition
  • 2 篇 speech enhanceme...
  • 2 篇 fitting
  • 2 篇 hearing aids
  • 2 篇 field programmab...
  • 2 篇 gaussian distrib...
  • 2 篇 polynomials
  • 2 篇 image recognitio...
  • 1 篇 conferences
  • 1 篇 genetic programm...
  • 1 篇 parallel process...
  • 1 篇 noise reduction
  • 1 篇 chemical activat...
  • 1 篇 approximation al...

机构

  • 40 篇 beijing key labo...
  • 30 篇 institute of sem...
  • 18 篇 annlab institute...
  • 17 篇 university of ch...
  • 9 篇 school of integr...
  • 8 篇 school of microe...
  • 8 篇 cognitive comput...
  • 7 篇 semiconductor ne...
  • 7 篇 materials and op...
  • 6 篇 semiconductor ne...
  • 5 篇 cas center for e...
  • 5 篇 college of micro...
  • 4 篇 school of comput...
  • 4 篇 cgnpc uranium in...
  • 4 篇 school of softwa...
  • 4 篇 center of materi...
  • 4 篇 chinese academy ...
  • 4 篇 school of semico...
  • 4 篇 school of inform...
  • 3 篇 school of inform...

作者

  • 19 篇 li weijun
  • 17 篇 yu lina
  • 14 篇 wu min
  • 14 篇 lu huaxiang
  • 12 篇 liu jingyi
  • 11 篇 sun linjun
  • 10 篇 li wenqiang
  • 9 篇 ning xin
  • 9 篇 li yanjie
  • 8 篇 chen gang
  • 8 篇 weijun li
  • 8 篇 hao meilan
  • 8 篇 gong guoliang
  • 7 篇 jin min
  • 7 篇 lina yu
  • 7 篇 dong xiaoli
  • 6 篇 zhang liping
  • 6 篇 min wu
  • 6 篇 guo xiaozhou
  • 5 篇 li jixing

语言

  • 60 篇 英文
  • 1 篇 中文
检索条件"机构=Semiconductor Neural Network Intelligent Perception and Computing Technology"
61 条 记 录,以下是41-50 订阅
排序:
Deep Learning Strategies for Addressing Anomalous Exposure in Image Processing: The FARDBUNet Approach  5
Deep Learning Strategies for Addressing Anomalous Exposure i...
收藏 引用
5th International Conference on High Performance Big Data and intelligent Systems, HDIS 2023
作者: Zhou, Qi Yang, Kai Ke, Zunwang Wang, Gang Zhang, Yugui Jia, Yizhen Cao, Fengcai Ma, Junxiao Liu, Changlin Zhang, Kaijie Wu, Min School of Semiconductor Science and Technology South China Normal University GuangZhou510631 China CGNPC Uranium Industry Development Co. Ltd. Beijing100020 China School of Software Xinjiang University Urumqi830046 China School of Computing and Data Engineering NingboTech University Ningbo315100 China AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China School of Integrated Circuits University of Chinese Academy of Sciences Beijing100049 China Co. Ltd Beijing100176 China School of Information Beijing Forestry University Beijing100083 China
In real-world scenarios, capturing scenes with excessive dynamic range often leads to the partial loss of highlight or dark area information due to irradiance variations and limitations in the capture capabilities of ... 详细信息
来源: 评论
Acq: Improving Generative Data-Free Quantization Via Attention Correction
SSRN
收藏 引用
SSRN 2023年
作者: Li, Jixing Guo, Xiaozhou Dai, Benzhe Gong, Guoliang Jin, Min Chen, Gang Mao, Wenyu Lu, Huaxiang Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China University of Chinese Academy of Sciences Beijing100089 China Semiconductor Neural Network Intelligent Perception and Computing Technology Beijing Key Laboratory Beijing100083 China Materials and Optoelectronics Research Center University of Chinese Academy of Sciences Beijing100083 China College of Microelectronics University of Chinese Academy of Sciences Beijing China
Data-free quantization aims to achieve model quantization without accessing any authentic sample. It is significant in an application-oriented context involving data privacy. Converting noise vectors into synthetic sa... 详细信息
来源: 评论
DoctorGPT: A Large Language Model with Chinese Medical Question-Answering Capabilities
DoctorGPT: A Large Language Model with Chinese Medical Quest...
收藏 引用
High Performance Big Data and intelligent Systems (HPBD&IS)
作者: Wenqiang Li Lina Yu Min Wu Jingyi Liu Meilan Hao Yanjie Li AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing China School of Electronic Electrical and Communication Engineering & School of Integrated Circuits University of Chinese Academy of Sciences Beijing China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing China
Large Language Models (LLMs) have made incredible strides recently in understanding and reacting to user intents. However, these models typically excel in English and have not been specifically trained for medical app...
来源: 评论
A neural-guided dynamic symbolic network for exploring mathematical expressions from data  24
A neural-guided dynamic symbolic network for exploring mathe...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Wenqiang Li Weijun Li Lina Yu Min Wu Linjun Sun Jingyi Liu Yanjie Li Shu Wei Yusong Deng Meilan Hao AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing China and School of Electronic Electrical and Communication Engineering & School of Integrated Circuits University of Chinese Academy of Sciences Beijing China and Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing China AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing China and School of Electronic Electrical and Communication Engineering & School of Integrated Circuits and Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing China and Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent deep generative SR methods have shown promi...
来源: 评论
ACQ: Improving Generative Data-free Quantization Via Attention Correction
arXiv
收藏 引用
arXiv 2023年
作者: Li, Jixing Guo, Xiaozhou Dai, Benzhe Gong, Guoliang Jin, Min Chen, Gang Mao, Wenyu Lu, Huaxiang Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China University of Chinese Academy of Sciences Beijing100049 China Semiconductor Neural Network Intelligent Perception and Computing Technology Beijing Key Laboratory Beijing100083 China Materials and Optoelectronics Research Center University of Chinese Academy of Sciences Beijing100049 China College of Microelectronics University of Chinese Academy of Sciences Beijing100049 China
Data-free quantization aims to achieve model quantization without accessing any authentic sample. It is significant in an application-oriented context involving data privacy. Converting noise vectors into synthetic sa... 详细信息
来源: 评论
GmFace: A mathematical model for face image representation using multi-gaussian
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Liping Li, Weijun Yu, Lina Dong, Xiaoli Sun, Linjun Ning, Xin Xu, Jian Qin, Hong Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Center of Materials Science and Optoelectronics Engineering School of Microelectronics University of Chinese Academy of Sciences Beijing100049 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China
Establishing mathematical models is a ubiquitous and effective method to understand the objective world. Due to complex physiological structures and dynamic behaviors, mathematical representation of the human face is ... 详细信息
来源: 评论
Rec-Symnet: Symbolic network-Based Rectifiable Learning Framework for Symbolic Regression
SSRN
收藏 引用
SSRN 2023年
作者: Liu, Jingyi Li, Weijun Yu, Lina Wu, Min Sun, Linjun Li, Wenqiang Li, Yanjie Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Center of Materials Science and Optoelectronics Engineering School of Integrated Circuits University of Chinese Academy of Sciences Beijing100049 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China
Symbolic regression (SR) can be utilized to unveil the underlying mathematical expressions that describe a given set of observed data. At present, SR can be categorized into two methods: learning-from-scratch and lear... 详细信息
来源: 评论
PruneSymNet: A Symbolic neural network and Pruning Algorithm for Symbolic Regression
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Min Li, Weijun Yu, Lina Li, Wenqiang Liu, Jingyi Li, Yanjie Hao, Meilan AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Center of Materials Science and Optoelectronics Engineering School of Microelectronics University of Chinese Academy of Sciences Beijing100049 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China
Symbolic regression aims to derive interpretable symbolic expressions from data in order to better understand and interpret data. In this study, a symbolic network called PruneSymNet is proposed for symbolic regressio... 详细信息
来源: 评论
Learning continuous face representation with explicit functions
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Liping Li, Weijun Sun, Linjun Yu, Lina Ning, Xin Dong, Xiaoli Xu, Jian Qin, Hong Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Center of Materials Science and Optoelectronics Engineering School of Microelectronics University of Chinese Academy of Sciences Beijing100049 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Institute of Semiconductors Beijing100083 China Cognitive Computing Technology Joint Laboratory Wave Group Beijing100083 China
How to represent a face pattern? While it is presented in a continuous way in our visual system, computers often store and process the face image in a discrete manner with 2D arrays of pixels. In this study, we attemp... 详细信息
来源: 评论
Incorporating Higher-Knowledge into Deep Symbolic Regression Under Generative neural network Framework
SSRN
收藏 引用
SSRN 2024年
作者: Liu, Jingyi Li, Weijun Yu, Lina Wu, Min Li, Wenqiang Li, Yanjie Hao, Meilan Annlab Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Center of Materials Science and Optoelectronics Engineering School of Integrated Circuits University of Chinese Academy of Sciences Beijing100049 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China
This paper introduces MSR, a generative neural network-based framework that incorporates an automatic module learning feature, aiming to enhance the search accuracy of Symbolic Regression (SR). Unlike existing deep mo... 详细信息
来源: 评论