咨询与建议

限定检索结果

文献类型

  • 640 篇 会议
  • 298 篇 期刊文献

馆藏范围

  • 938 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 494 篇 工学
    • 368 篇 计算机科学与技术...
    • 320 篇 软件工程
    • 133 篇 信息与通信工程
    • 99 篇 电气工程
    • 48 篇 控制科学与工程
    • 45 篇 生物工程
    • 43 篇 电子科学与技术(可...
    • 36 篇 机械工程
    • 33 篇 网络空间安全
    • 27 篇 生物医学工程(可授...
    • 26 篇 光学工程
    • 25 篇 安全科学与工程
    • 24 篇 交通运输工程
    • 21 篇 仪器科学与技术
    • 19 篇 化学工程与技术
    • 13 篇 土木工程
    • 11 篇 建筑学
  • 229 篇 理学
    • 144 篇 数学
    • 49 篇 统计学(可授理学、...
    • 43 篇 生物学
    • 42 篇 物理学
    • 22 篇 系统科学
    • 16 篇 化学
  • 122 篇 管理学
    • 73 篇 管理科学与工程(可...
    • 65 篇 图书情报与档案管...
    • 22 篇 工商管理
  • 29 篇 医学
    • 23 篇 临床医学
    • 20 篇 基础医学(可授医学...
  • 27 篇 法学
    • 16 篇 社会学
    • 13 篇 法学
  • 7 篇 经济学
  • 6 篇 教育学
  • 6 篇 军事学
  • 3 篇 农学

主题

  • 88 篇 feature extracti...
  • 72 篇 accuracy
  • 61 篇 semantics
  • 53 篇 computational mo...
  • 46 篇 data models
  • 43 篇 training
  • 38 篇 federated learni...
  • 37 篇 deep learning
  • 33 篇 neural networks
  • 26 篇 transformers
  • 25 篇 predictive model...
  • 23 篇 adaptation model...
  • 20 篇 object detection
  • 20 篇 data mining
  • 20 篇 benchmark testin...
  • 19 篇 speech processin...
  • 19 篇 visualization
  • 19 篇 privacy
  • 18 篇 convolution
  • 18 篇 optimization

机构

  • 219 篇 key laboratory o...
  • 198 篇 shandong provinc...
  • 45 篇 shandong enginee...
  • 41 篇 shaanxi key labo...
  • 37 篇 shandong fundame...
  • 37 篇 school of comput...
  • 34 篇 school of comput...
  • 32 篇 shaanxi key labo...
  • 28 篇 qilu university ...
  • 28 篇 shandong provinc...
  • 19 篇 school of comput...
  • 19 篇 school of comput...
  • 19 篇 shandong provinc...
  • 18 篇 shaanxi key labo...
  • 16 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 15 篇 quan cheng labor...
  • 15 篇 xi'an key labora...
  • 14 篇 tianjin key labo...
  • 14 篇 qilu university ...

作者

  • 28 篇 yichuan wang
  • 23 篇 xinhong hei
  • 23 篇 wang yichuan
  • 20 篇 xiaoming wu
  • 17 篇 hei xinhong
  • 16 篇 haiyan jin
  • 15 篇 xiangzhi liu
  • 15 篇 shen yulong
  • 14 篇 meng deyu
  • 14 篇 li wei
  • 13 篇 guohua lv
  • 13 篇 jin haiyan
  • 13 篇 wenpeng lu
  • 12 篇 lei zhu
  • 12 篇 aimin li
  • 11 篇 wang lei
  • 11 篇 lu wenpeng
  • 11 篇 jing zhao
  • 11 篇 chen yanping
  • 11 篇 xiaohui han

语言

  • 872 篇 英文
  • 55 篇 其他
  • 13 篇 中文
检索条件"机构=Shaanxi Key Laboratory for Network Computing and Security Technology"
938 条 记 录,以下是11-20 订阅
排序:
Boosting cationic and anionic redox activity of Li-rich layered oxide cathodes via Li/Ni disordered regulation
收藏 引用
Journal of Energy Chemistry 2025年 第1期100卷 533-543页
作者: Zewen Liu Zhen Wu Hao Wang Xudong Zhang Yuanzhen Chen Yongning Liu Shengwu Guo Shenghua Chen Yanli Nan Yan Liu State Key Laboratory for Mechanical Behavior of Materials Xi’an Jiaotong UniversityXi’an 710049ShaanxiChina School of Materials Science and Engineering Xi’an University of Architecture and TechnologyXi’an 710055ShaanxiChina Hefei Advanced Computing Center Operation Management Corp Ltd Hefei 230088AnhuiChina Network Information Center Xi’an Jiaotong UniversityXi’an 710049ShaanxiChina
Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial ... 详细信息
来源: 评论
Diffusion Model with Multi-layer Wavelet Transform for Low-Light Image Enhancement
Diffusion Model with Multi-layer Wavelet Transform for Low-L...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Haiyan Jin Jing Wang Fengyuan Zuo Haonan Su Zhaolin Xiao Bin Wang Yuanlin Zhang Xi’an University of Technology China Shaanxi Key Laboratory for Network Computing and Security Technology China
Low-light image enhancement methods based on diffusion models, though effective in improving image quality, often overrely on noise sensitivity and neglect the reconstruction deviations due to the naive up- and down-s... 详细信息
来源: 评论
A Chain-of-Task Framework for Instruction Tuning of LLMs Based on Chinese Grammatical Error Correction  31
A Chain-of-Task Framework for Instruction Tuning of LLMs Bas...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Liu, Xinpeng Xu, Bing Yang, Muyun Cao, Hailong Zhu, Conghui Zhao, Tiejun Lu, Wenpeng Faculty of Computing Harbin Institute of Technology Harbin China Key Laboratory of Computing Power Network and Information Security Ministry of Education Qilu University of Technology Shandong Academy of Sciences Jinan China
Over-correction is a critical issue for large language models (LLMs) to address Grammatical Error Correction (GEC) task, esp. for Chinese. This paper proposes a Chain-of-Task (CoTask) framework to reduce over-correcti... 详细信息
来源: 评论
Fusion of Time-Frequency Features in Contrastive Learning for Shipboard Wind Speed Correction
收藏 引用
Journal of Ocean University of China 2025年 第2期24卷 377-386页
作者: SONG Jian HUANG Meng LI Xiang ZHANG Zhenqiang WANG Chunxiao ZHAO Zhigang Key Laboratory of Computing Power Network and Information Security Ministry of EducationShandong Computer Science Center(National Supercomputer Center in Jinan)Qilu University of Technology(Shandong Academy of Sciences)Jinan 250000China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer ScienceJinan 250000China
Accurate wind speed measurements on maritime vessels are crucial for weather forecasting,sea state prediction,and safe ***,vessel motion and challenging environmental conditions often affect measurement *** address th... 详细信息
来源: 评论
Glare-SNet: Unsupervised Glare Suppression Balance network  27th
Glare-SNet: Unsupervised Glare Suppression Balance Network
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: Li, Pei Zuo, Chengyu Wei, Wangjuan Pan, Xiaoying Wang, Zhanhao School of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an China Shaanxi Key Laboratory of Intelligent Media Computing and interaction Xi’an China Xi’an Key Laboratory of Big Data and Intelligent Computing Xi’an China
In light of the problems associated with glare and halo effects in low-light images, as well as the inadequacy of existing processing algorithms in handling details, a glare suppression balance network based on unsupe... 详细信息
来源: 评论
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural network Training Based on Functional Encryption
收藏 引用
Computers, Materials & Continua 2025年 第3期82卷 5387-5405页
作者: Hao Li Kuan Shao Xin Wang Mufeng Wang Zhenyong Zhang The State Key Laboratory of Public Big Data College of Computer Science and TechnologyGuizhou UniversityGuiyang550025China Key Laboratory of Computing Power Network and Information Security Ministry of EducationShandong Computer Science CenterQilu University of Technology(Shandong Academy of Sciences)Jinan250014China China Industrial Control Systems Cyber Emergency Response Team Beijing100040China
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model ***,dishonest clouds may infer user data,resulting in user data *** schemes have achie... 详细信息
来源: 评论
Multiple Edge Data Integrity Verification with Multi-Vendors and Multi-Servers in Mobile Edge computing
收藏 引用
IEEE Transactions on Mobile computing 2025年 第6期24卷 4668-4683页
作者: Islam, Md Rashedul Xiang, Yong Uddin, Md Palash Zhao, Yao Kua, Jonathan Gao, Longxiang The School of Information Technology Deakin University GeelongVIC3220 Australia The Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Qilu University of Technology Shandong Academy of Sciences Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China
Ensuring Edge Data Integrity (EDI) is imperative in providing reliable and low-latency services in mobile edge computing. Existing EDI schemes typically address single-vendor (App Vendor, AV) single-server (Edge Serve... 详细信息
来源: 评论
Edge-Cloud Cooperation-Driven Intelligent Sustainability Evaluation Strategy Based on IoT and CPS for Energy-Intensive Manufacturing Industries
收藏 引用
IEEE Internet of Things Journal 2025年 第9期12卷 12287-12297页
作者: Ma, Shuaiyin Huang, Yuming Chen, Yanping Xiao, Qinge Xu, Jun Leng, Jiewu Xi’an University of Posts and Telecommunications Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an Key Laboratory of Big Data and Intelligent Computing School of Computer Science and Technology Xi’an710121 China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China Xidian University Advanced Manufacturing Technology Innovation Center Guangzhou Institute of Technology Guangzhou510555 China Guangdong University of Technology Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing System State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment Guangzhou510006 China
The advancement of the Industry 5.0 in information technology has led to increased interest in integrating edge-cloud cooperation with Internet of Things (IoT) and cyber-physical system (CPS) designs. This integration... 详细信息
来源: 评论
Disentangled Noisy Correspondence Learning
收藏 引用
IEEE Transactions on Image Processing 2025年 34卷 2602-2615页
作者: Dang, Zhuohang Luo, Minnan Wang, Jihong Jia, Chengyou Han, Haochen Wan, Herun Dai, Guang Chang, Xiaojun Wang, Jingdong Xi’an Jiaotong University School of Computer Science and Technology Ministry of Education Key Laboratory of Intelligent Networks and Network Security Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Shaanxi Xi’an710049 China SGIT AI Laboratory Xi’an710048 China State Grid Corporation of China State Grid Shaanxi Electric Power Company Ltd. Xi’an710048 China University of Science and Technology of China School of Information Science and Technology Hefei230026 China Abu Dhabi United Arab Emirates Baidu Inc. Beijing100085 China
Cross-modal retrieval is crucial in understanding latent correspondences across modalities. However, existing methods implicitly assume well-matched training data, which is impractical as real-world data inevitably in... 详细信息
来源: 评论
DCGSD: Low-Light Image Enhancement with Dual-Conditional Guidance Sparse Diffusion Model
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年
作者: Jin, Haiyan Wang, Jing Zuo, Fengyuan Su, Haonan Xiao, Zhaolin Wang, Bin Zhang, Yuanlin Xi'an University of Technology Shaanxi Key Laboratory for Network Computing and Security Technology Department of Computer Science and Engineering NO. 5 South Jinhua Road Shaanxi Xi'an710048 China
When restoring low-light images, most methods largely overlook the ambiguity due to dark noise and lack discrimination for region and shape representations, resulting in invalid feature enhancement. In this work, we p... 详细信息
来源: 评论