The well-known non-interactive and information-theoretic secure verifiable secret sharing scheme presented by Pedersen is over a large prime. In this paper, we construct a novel non-interactive and information-theoret...
详细信息
The well-known non-interactive and information-theoretic secure verifiable secret sharing scheme presented by Pedersen is over a large prime. In this paper, we construct a novel non-interactive and information-theoretic verifiable secret sharing over RSA (Rivest, Shamir, Adleman) modulus and give the rigorous security proof. It is shown how to distribute a secret among a group such that any set of k parties get no information about the secret. The presented scheme is generally applied to constructions of secure distributed multiplication and threshold or forward-secure signature protocols.
We present a robust disaster recovery system model according to the requests of disaster recovery talent of a key e-government project of China. The model strengthens the safe communication ability and guarantees the ...
详细信息
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models across distributed devices while preserving their data privacy. However, the robustness of FL models against adversarial...
详细信息
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models across distributed devices while preserving their data privacy. However, the robustness of FL models against adversarial data and model attacks, noisy updates, and label-flipped data issues remain a critical concern. In this paper, we present a systematic literature review using the PRISMA framework to comprehensively analyze existing research on robust FL. Through a rigorous selection process using six key databases (ACM Digital Library, IEEE Xplore, ScienceDirect, Springer, Web of Science, and Scopus), we identify and categorize 244 studies into eight themes of ensuring robustness in FL: objective regularization, optimizer modification, differential privacy employment, additional dataset requirement and decentralization orchestration, manifold, client selection, new aggregation algorithms, and aggregation hyperparameter tuning. We synthesize the findings from these themes, highlighting the various approaches and their potential gaps proposed to enhance the robustness of FL models. Furthermore, we discuss future research directions, focusing on the potential of hybrid approaches, ensemble techniques, and adaptive mechanisms for addressing the challenges associated with robust FL. This review not only provides a comprehensive overview of the state-of-the-art in robust FL but also serves as a roadmap for researchers and practitioners seeking to advance the field and develop more robust and resilient FL systems.
The rapid evolution of backdoor attacks has emerged as a significant threat to the security of autonomous driving models. An attacker injects a backdoor into the model by adding triggers to the samples, which can be a...
详细信息
The rapid evolution of backdoor attacks has emerged as a significant threat to the security of autonomous driving models. An attacker injects a backdoor into the model by adding triggers to the samples, which can be activated to manipulate the model’s inference. Backdoor attacks can lead to severe consequences, such as misidentifying traffic signs during autonomous driving, posing a risk of causing traffic accidents. Recently, there has been a gradual evolution of frequency-domain backdoor attacks. However, since the change of both amplitude and its corresponding phase will significantly affect image appearance, most of the existing frequency-domain backdoor attacks change only the amplitude, which results in a suboptimal efficacy of the attack. In this work, we propose an attack called IBAQ, to solve this problem by blurring semantic information of the trigger image through the quadratic phase. Initially, we convert the trigger and benign sample to YCrCb space. Then, we perform the fast Fourier transform on the Y channel, blending the trigger image’s amplitude and quadratic phase linearly with the benign sample’s amplitude and phase. IBAQ achieves covert injection of trigger information within amplitude and phase, enhancing the attack effect. We validate the effectiveness and stealthiness of IBAQ through comprehensive experiments.
Multi-modal sarcasm detection involves determining whether a given multi-modal input conveys sarcastic intent by analyzing the underlying sentiment. Recently, vision large language models have shown remarkable success...
详细信息
Multi-modal sarcasm detection involves determining whether a given multi-modal input conveys sarcastic intent by analyzing the underlying sentiment. Recently, vision large language models have shown remarkable success on various of multi-modal tasks. Inspired by this, we systematically investigate the impact of vision large language models in zero-shot multi-modal sarcasm detection task. Furthermore, to capture different perspectives of sarcastic expressions, we propose a multi-view agent framework, S3 Agent, designed to enhance zero-shot multi-modal sarcasm detection by leveraging three critical perspectives: superficial expression, semantic information, and sentiment expression. Our experiments on the MMSD2.0 dataset, which involves six models and four prompting strategies, demonstrate that our approach achieves state-of-the-art performance. Our method achieves an average improvement of 13.2% in accuracy. Moreover, we evaluate our method on the text-only sarcasm detection task, where it also surpasses baseline approaches.
In the evolving landscape of recommender systems, the challenge of effectively conducting privacy-preserving Cross-Domain Recommendation (CDR), especially under strict non-overlapping constraints, has emerged as a key...
详细信息
In the evolving landscape of recommender systems, the challenge of effectively conducting privacy-preserving Cross-Domain Recommendation (CDR), especially under strict non-overlapping constraints, has emerged as a key focus. Despite extensive research has made significant progress, several limitations still exist: 1) Previous semantic-based methods fail to deeply exploit rich textual information, since they quantize the text into codes, losing its original rich semantics. 2) The current solution solely relies on the text-modality, while the synergistic effects with the ID-modality are ignored. 3) Existing studies do not consider the impact of irrelevant semantic features, leading to inaccurate semantic representation. To address these challenges, we introduce federated semantic learning and devise FFMSR as our solution. For Limitation 1, we locally learn items’ semantic encodings from their original texts by a multi-layer semantic encoder, and then cluster them on the server to facilitate the transfer of semantic knowledge between domains. To tackle Limitation 2, we integrate both ID and Text modalities on the clients, and utilize them to learn different aspects of items. To handle Limitation 3, a Fast Fourier Transform (FFT)-based filter and a gating mechanism are developed to alleviate the impact of irrelevant semantic information in the local model. We conduct extensive experiments on two real-world datasets, and the results demonstrate the superiority of our FFMSR method over other SOTA methods. Our source codes are publicly available at: https://***/Sapphire-star/FFMSR.
Non-overlapping Cross-domain Sequential Recommendation (NCSR) is the task that focuses on domain knowledge transfer without overlapping entities. Compared with traditional Cross-domain Sequential Recommendation (CSR),...
详细信息
Non-overlapping Cross-domain Sequential Recommendation (NCSR) is the task that focuses on domain knowledge transfer without overlapping entities. Compared with traditional Cross-domain Sequential Recommendation (CSR), NCSR poses several challenges: 1) NCSR methods often rely on explicit item IDs, overlooking semantic information among entities. 2) Existing CSR mainly relies on domain alignment for knowledge transfer, risking semantic loss during alignment. 3) Most previous studies do not consider the many-to-one characteristic, which is challenging because of the utilization of multiple source domains. Given the above challenges, we introduce the prompt learning technique for Many-to-one Non-overlapping Cross-domain Sequential Recommendation (MNCSR) and propose a Text-enhanced Co-attention Prompt Learning Paradigm (TCPLP). Specifically, we capture semantic meanings by representing items through text rather than IDs, leveraging natural language universality to facilitate cross-domain knowledge transfer. Unlike prior works that need to conduct domain alignment, we directly learn transferable domain information, where two types of prompts, i.e., domain-shared and domain-specific prompts, are devised, with a co-attention-based network for prompt encoding. Then, we develop a two-stage learning strategy, i.e., pre-train & prompt-tuning paradigm, for domain knowledge pre-learning and transferring, respectively. We conduct extensive experiments on three datasets and the experimental results demonstrate the superiority of our TCPLP. Our source codes have been publicly released.
暂无评论