咨询与建议

限定检索结果

文献类型

  • 207 篇 会议
  • 95 篇 期刊文献

馆藏范围

  • 302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 146 篇 计算机科学与技术...
    • 131 篇 软件工程
    • 53 篇 信息与通信工程
    • 21 篇 电气工程
    • 21 篇 生物工程
    • 15 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 控制科学与工程
    • 11 篇 仪器科学与技术
    • 11 篇 网络空间安全
    • 7 篇 土木工程
    • 7 篇 交通运输工程
    • 7 篇 安全科学与工程
    • 6 篇 光学工程
    • 6 篇 建筑学
    • 6 篇 生物医学工程(可授...
    • 5 篇 化学工程与技术
  • 79 篇 理学
    • 47 篇 数学
    • 19 篇 生物学
    • 12 篇 物理学
    • 9 篇 系统科学
    • 5 篇 统计学(可授理学、...
  • 46 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 9 篇 法学
    • 5 篇 法学
    • 5 篇 社会学
  • 7 篇 医学
    • 6 篇 临床医学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 5 篇 教育学
    • 4 篇 教育学
  • 3 篇 军事学
  • 2 篇 农学
  • 1 篇 文学

主题

  • 15 篇 feature extracti...
  • 12 篇 computational mo...
  • 12 篇 semantics
  • 11 篇 blockchain
  • 9 篇 network security
  • 9 篇 accuracy
  • 9 篇 data models
  • 8 篇 deep learning
  • 8 篇 neural networks
  • 7 篇 image enhancemen...
  • 7 篇 optimization
  • 7 篇 petri nets
  • 7 篇 predictive model...
  • 7 篇 codes
  • 7 篇 protocols
  • 7 篇 federated learni...
  • 7 篇 cloud computing
  • 6 篇 transformers
  • 6 篇 servers
  • 6 篇 benchmark testin...

机构

  • 42 篇 shaanxi key labo...
  • 35 篇 school of comput...
  • 35 篇 school of comput...
  • 32 篇 shaanxi key labo...
  • 24 篇 the state key la...
  • 18 篇 institute of blo...
  • 11 篇 xi'an university...
  • 10 篇 school of comput...
  • 9 篇 state key labora...
  • 8 篇 shaanxi key labo...
  • 7 篇 department of co...
  • 7 篇 college of compu...
  • 7 篇 shaanxi key labo...
  • 7 篇 college of xi'an...
  • 6 篇 xi'an university...
  • 6 篇 school of comput...
  • 6 篇 college of infor...
  • 6 篇 shaanxi key labo...
  • 6 篇 shaanxi key labo...
  • 5 篇 shaanxi key labo...

作者

  • 28 篇 yichuan wang
  • 24 篇 xinhong hei
  • 22 篇 wang yichuan
  • 17 篇 hei xinhong
  • 15 篇 haiyan jin
  • 14 篇 jin haiyan
  • 13 篇 li wei
  • 10 篇 wang lei
  • 10 篇 lei zhu
  • 10 篇 wei wei
  • 9 篇 bin wang
  • 9 篇 xiaoxue liu
  • 9 篇 shen yulong
  • 9 篇 qingqi pei
  • 9 篇 wenjiang ji
  • 8 篇 zhu lei
  • 8 篇 jingwei liu
  • 8 篇 haonan su
  • 8 篇 dong xuewen
  • 7 篇 zhao minghua

语言

  • 272 篇 英文
  • 28 篇 其他
  • 4 篇 中文
检索条件"机构=Shaanxi Key Laboratory of BlockChain and Security Computing"
302 条 记 录,以下是1-10 订阅
排序:
Block-gram:Mining knowledgeable features for efficiently smart contract vulnerability detection
收藏 引用
Digital Communications and Networks 2025年 第1期11卷 1-12页
作者: Xueshuo Xie Haolong Wang Zhaolong Jian Yaozheng Fang Zichun Wang Tao Li Tianjin Key Laboratory of Network and Data Security Technology TianjinChina College of Computer Science Nankai UniversityTianjinChina Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province China State Key Laboratory of Computer Architecture Institute of Computing TechnologyChinese Academy of SciencesChina
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on *** vulnerability detection of large-scale smart contracts is critical,as attacks on smart cont... 详细信息
来源: 评论
IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage System for Large Language Model Inference  23
IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Ruidong Yang, Siling Chen, Ping Zheng, Yi Huai, Baoxing Chen, Gang The State Key Laboratory of Blockchain and Data Security Zhejiang University China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Huawei Cloud China
Modern advanced large language model (LLM) applications often prepend long contexts before user queries to improve model output quality. These contexts frequently repeat, either partially or fully, across multiple que...
来源: 评论
LeapGNN: Accelerating Distributed GNN Training Leveraging Feature-Centric Model Migration  23
LeapGNN: Accelerating Distributed GNN Training Leveraging Fe...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Xuechen The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ... 详细信息
来源: 评论
Diffusion Model with Multi-layer Wavelet Transform for Low-Light Image Enhancement
Diffusion Model with Multi-layer Wavelet Transform for Low-L...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Jin, Haiyan Wang, Jing Zuo, Fengyuan Su, Haonan Xiao, Zhaolin Wang, Bin Zhang, Yuanlin Xi'an University of Technology 710048 China Shaanxi Key Laboratory for Network Computing and Security Technology 710048 China
Low-light image enhancement methods based on diffusion models, though effective in improving image quality, often overrely on noise sensitivity and neglect the reconstruction deviations due to the naive up- and down-s... 详细信息
来源: 评论
DP-DID: A Dynamic and Proactive Decentralized Identity System
收藏 引用
IEEE Transactions on Information Forensics and security 2025年 20卷 4999-5014页
作者: Yin, Jie Xiao, Yang Chen, Qian Lim, Yong zhi Liu, Xuefeng Pei, Qingqi Zhou, Jianying Xidian University State Key Laboratory of Integrated Services Network Xi’an710071 China Singapore University of Technology and Design Department of Information Systems Technology and Design Tampines 487372 Singapore Xidian University State Key Laboratory of Integrated Services Network Shaanxi Key Laboratory of Blockchain and Secure Computing Xi’an710071 China
Decentralized identity (DID) is a transformative paradigm that leverages blockchain, decentralized identifiers and verifiable credentials (VCs) to enable self-sovereign and decentralized identity management with myria... 详细信息
来源: 评论
Textual Data De-Privatization Scheme Based on Generative Adversarial Networks  24th
Textual Data De-Privatization Scheme Based on Generative Adv...
收藏 引用
24th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2024
作者: Du, Yanning Xu, Jinnan Zhang, Yaling Wang, Yichuan Wang, Zhoukai School of Computer Science and Engineering Xi’an University of Technology Xi’an China Shaanxi Key Laboratory for Network Computing and Security Technology Xi’an China
In many fields, such as healthcare, finance, and scientific research, data sharing and collaboration are critical to achieving better outcomes. However, the sharing of personal data often involves privacy risks, so pr... 详细信息
来源: 评论
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerators  31
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerato...
收藏 引用
31st IEEE International Symposium on High Performance Computer Architecture, HPCA 2025
作者: Yang, Siling He, Shuibing Wang, Wenjiong Yin, Yanlong Wu, Tong Chen, Weijian Zhang, Xuechen Sun, Xian-He Feng, Dan The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States Illinois Institute of Technology United States Huazhong University of Science and Technology China Wuhan National Laboratory for Optoelectronics China
Graph convolutional networks (GCNs) are popular for a variety of graph learning tasks. ReRAM-based processing-in-memory (PIM) accelerators are promising to expedite GCN training owing to their in-situ computing capabi... 详细信息
来源: 评论
IMPRESS: an importance-informed multi-tier prefix KV storage system for large language model inference  25
IMPRESS: an importance-informed multi-tier prefix KV storage...
收藏 引用
Proceedings of the 23rd USENIX Conference on File and Storage Technologies
作者: Weijian Chen Shuibing He Haoyang Qu Ruidong Zhang Siling Yang Ping Chen Yi Zheng Baoxing Huai Gang Chen The State Key Laboratory of Blockchain and Data Security Zhejiang University and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security and Zhejiang Key Laboratory of Big Data Intelligent Computing The State Key Laboratory of Blockchain and Data Security Zhejiang University Huawei Cloud
Modern advanced large language model (LLM) applications often prepend long contexts before user queries to improve model output quality. These contexts frequently repeat, either partially or fully, across multiple que...
来源: 评论
LeapGNN: accelerating distributed GNN training leveraging feature-centric model migration  25
LeapGNN: accelerating distributed GNN training leveraging fe...
收藏 引用
Proceedings of the 23rd USENIX Conference on File and Storage Technologies
作者: Weijian Chen Shuibing He Haoyang Qu Xuechen Zhang The State Key Laboratory of Blockchain and Data Security Zhejiang University and Zhejiang Lab and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security and Zhejiang Key Laboratory of Big Data Intelligent Computing Washington State University Vancouver
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ...
来源: 评论
A Method for Removing Reflections from Water Surface Images Based on Pre-trained Image Restoration
A Method for Removing Reflections from Water Surface Images ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Minghua Zhao Rui Zhi Shuangli Du Jing Hu Cheng Shi Lin Wang Shaanxi Key Laboratory for Network Computing and Security Technology Xi'an University of Technology Xi’an China
Reflections on the water surface hinder the extraction of valuable information from water surface images. To remove reflections from water surface images, we construct a synthetic dataset and propose a multi-task netw... 详细信息
来源: 评论