咨询与建议

限定检索结果

文献类型

  • 226 篇 会议
  • 131 篇 期刊文献

馆藏范围

  • 357 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 244 篇 工学
    • 190 篇 计算机科学与技术...
    • 168 篇 软件工程
    • 80 篇 信息与通信工程
    • 41 篇 生物工程
    • 29 篇 电气工程
    • 27 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 18 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 光学工程
    • 11 篇 化学工程与技术
    • 10 篇 交通运输工程
    • 10 篇 网络空间安全
    • 9 篇 动力工程及工程热...
    • 9 篇 安全科学与工程
    • 7 篇 仪器科学与技术
  • 130 篇 理学
    • 73 篇 数学
    • 39 篇 生物学
    • 30 篇 统计学(可授理学、...
    • 18 篇 物理学
    • 14 篇 系统科学
    • 13 篇 化学
  • 82 篇 管理学
    • 44 篇 图书情报与档案管...
    • 41 篇 管理科学与工程(可...
    • 18 篇 工商管理
  • 21 篇 医学
    • 16 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 15 篇 法学
    • 12 篇 社会学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 农学
  • 3 篇 教育学
  • 2 篇 文学

主题

  • 24 篇 feature extracti...
  • 17 篇 semantics
  • 13 篇 training
  • 11 篇 accuracy
  • 9 篇 deep learning
  • 9 篇 predictive model...
  • 8 篇 reinforcement le...
  • 8 篇 data models
  • 7 篇 image enhancemen...
  • 7 篇 convolution
  • 7 篇 contrastive lear...
  • 7 篇 graph neural net...
  • 7 篇 visualization
  • 6 篇 task analysis
  • 6 篇 neural networks
  • 6 篇 machine learning
  • 6 篇 time series anal...
  • 6 篇 correlation
  • 6 篇 forecasting
  • 5 篇 object detection

机构

  • 57 篇 college of compu...
  • 50 篇 school of comput...
  • 32 篇 shaanxi key labo...
  • 31 篇 fujian key labor...
  • 31 篇 fujian provincia...
  • 28 篇 shaanxi key labo...
  • 25 篇 school of comput...
  • 18 篇 engineering rese...
  • 17 篇 key laboratory o...
  • 17 篇 xi'an key labora...
  • 15 篇 college of mathe...
  • 13 篇 shaanxi key labo...
  • 11 篇 shaanxi key labo...
  • 10 篇 fujian key labor...
  • 9 篇 xi'an university...
  • 9 篇 fuzhou universit...
  • 8 篇 fujian provincia...
  • 8 篇 xi’an key labora...
  • 6 篇 school of comput...
  • 6 篇 xi'an university...

作者

  • 28 篇 wang zhongmin
  • 23 篇 chen yanping
  • 19 篇 guo kun
  • 18 篇 guo wenzhong
  • 15 篇 xia hong
  • 14 篇 gao cong
  • 14 篇 zhongmin wang
  • 13 篇 yanping chen
  • 12 篇 wang shiping
  • 11 篇 ma sugang
  • 10 篇 yu zhiyong
  • 10 篇 pan xiaoying
  • 10 篇 sun jiaze
  • 9 篇 liu jun
  • 9 篇 hou zhiqiang
  • 9 篇 yang xiaobao
  • 7 篇 hong xia
  • 7 篇 huang fangwan
  • 7 篇 bai zongwen
  • 7 篇 kun guo

语言

  • 339 篇 英文
  • 12 篇 中文
  • 11 篇 其他
检索条件"机构=Shaanxi Key Laboratory of Network Data Intelligent Processing"
357 条 记 录,以下是21-30 订阅
排序:
Control Logic Routing for Continuous-Flow Microfluidic Biochips Based on Deep Reinforcement Learning
收藏 引用
Jisuanji Yanjiu yu Fazhan/Computer Research and Development 2025年 第4期62卷 950-962页
作者: Cai, Huayang Huang, Xing Liu, Genggeng College of Computer and Data Science Fuzhou University Fuzhou350116 China Engineering Research Center of Big Data Intelligence Fuzhou University Ministry of Education Fuzhou350116 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China School of Computer Science Northwestern Polytechnical University Xi’an710072 China
With the advancement of electronic design automation, continuous-flow microfluidic biochips have become one of the most promising platforms for biochemical experiments. This chip manipulates fluid samples in millilite... 详细信息
来源: 评论
HyperDiff: Masked Diffusion Model with High-efficient Transformer for Hyperspectral Image Cross-Scene Classification
HyperDiff: Masked Diffusion Model with High-efficient Transf...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal processing, ICASSP 2025
作者: Zhang, Pei Wang, Dong Wu, Chanyue Yang, Jing Kang, Lei Bai, Zongwen Li, Ying Shen, Qiang School of Computer Science Northwestern Polytechnical University Xi'an China Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data Yan'an University Yan'an China School of Automation and Software Engineering Shanxi University Taiyuan China Qingdao Topscomm Communication Co. Ltd. Qingdao China Department of Computer Science Aberystwyth University Aberystwyth United Kingdom
Hyperspectral Image (HSI) cross-scene classification is a challenging task in remote sensing, particularly when real-time processing of Target Domain (TD) HSI is required, and data cannot be reused for training. While... 详细信息
来源: 评论
D-FGNAE: Decentralized Federated Graph Normalized AutoEncoder  19th
D-FGNAE: Decentralized Federated Graph Normalized AutoEncode...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2024
作者: Liang, Yuting Cai, Weixin Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Graphs widely exist in real-world, and Graph Neural networks (GNNs) have exhibited exceptional efficacy in graph learning in diverse fields. With the strengthening of data privacy protection worldwide in recent years,... 详细信息
来源: 评论
Community Evolution Tracking Based on High-Order Neighbor Consideration and Node Change Identification  19th
Community Evolution Tracking Based on High-Order Neighbor C...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2024
作者: Zhang, Yunan Wang, Chaohui Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Community evolution tracking is widely used in complex network analysis, which analyzes and identifies how communities evolve over time based on dynamic community detection. However, the current incremental dynamic co... 详细信息
来源: 评论
Community-Aware Heterogeneous Graph Contrastive Learning  19th
Community-Aware Heterogeneous Graph Contrastive Learning
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2024
作者: Li, Xinying Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Recently, heterogeneous graph contrastive learning, which can mine supervision signals from the data, has attracted widespread attention. However, most existing methods employ random data augmentation strategies to co... 详细信息
来源: 评论
UGCM-LU: A Unified Stream and Batch Graph Computing Model with Local Update for Community Detection  19th
UGCM-LU: A Unified Stream and Batch Graph Computing Model w...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2024
作者: Li, Hong Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Unified stream and batch computing (USBC) aims to incorporate stream and batch computation into a unified framework, thereby enabling the development of a one-stop solution for stream and batch data processing and enh... 详细信息
来源: 评论
Spatial-Temporal Semantic Feature Interaction network for Semantic Change Detection in Remote Sensing Images
收藏 引用
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2025年
作者: Zhang, Yuhang Zhang, Wuxia Ding, Songtao Wu, Siyuan Lu, Xiaoqiang Xi'an University of Posts and Telecommunications Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing School of Computer Science and Technology Xi'an710121 China Xi'an University of Technology College of Computer Science and Engineering Shaanxi Xi'an710048 China Fuzhou University College of Physics and Information Engineering Fuzhou350002 China
Semantic Change Detection (SCD) in Remote Sensing Images (RSI) aims to identify changes in the type of Land Cover/Land Use (LCLU) corresponding to changed areas in RSI. The "from-to" information of the acqui... 详细信息
来源: 评论
Rethinking attention mechanism for enhanced pedestrian attribute recognition
收藏 引用
Neurocomputing 2025年 639卷
作者: Wu, Junyi Huang, Yan Gao, Min Niu, Yuzhen Chen, Yuzhong Wu, Qiang Fujian Key Laboratory of Network Computing and Intelligent Information Processing College of Computer and Data Science Fuzhou University Fujian Fuzhou350108 China Engineering Research Center of BigData Intelligence Ministry of Education Fujian Fuzhou350108 China Australian Artificial Intelligence Institute University of Technology Sydney SydneyNSW2007 Australia Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information College of Physics and Information Engineering Fuzhou University Fujian Fuzhou350108 China School of Electrical and Data Engineering University of Technology Sydney SydneyNSW2007 Australia
Pedestrian Attribute Recognition (PAR) plays a crucial role in various computer vision applications, demanding precise and reliable identification of attributes from pedestrian images. Traditional PAR methods, though ... 详细信息
来源: 评论
Multi-agent Collaboration for Vehicular Task Offloading Using Federated Deep Reinforcement Learning
收藏 引用
IEEE Transactions on Mobile Computing 2025年
作者: Chen, Xing Xiao, Bohuai Lin, Xinyu Chen, Zheyi Min, Geyong Fuzhou University College of Computer and Data Science Fuzhou350116 China Ministry of Education Engineering Research Center of Big Data Intelligence Fuzhou350002 China Fuzhou University Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350116 China University of Exeter Department of Computer Science ExeterEX4 4QF United Kingdom
Mobile Edge Computing (MEC) distributes resources such as computing, storage, and bandwidth to the side close to users, which can provide low-latency services to in-vehicle users, thus promising a more efficient and s... 详细信息
来源: 评论
NI-GDBA: Non-Intrusive Distributed Backdoor Attack Based on Adaptive Perturbation on Federated Graph Learning  25
NI-GDBA: Non-Intrusive Distributed Backdoor Attack Based on ...
收藏 引用
Proceedings of the ACM on Web Conference 2025
作者: Ken Li Bin Shi Jiazhe Wei Bo Dong School of Computer Science and Technology Xi'an Jiaotong University Xi'an China and Ministry of Education Key Laboratory of Intelligent Networks and Network Security Xi'an Jiaotong University Xi'an China School of Computer Science and Technology Xi'an Jiaotong University Xi'an China and Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi'an Jiaotong University Xi'an China School of Distance Education Xi'an Jiaotong University Xi'an China and Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi'an Jiaotong University Xi'an China
Federated Graph Learning (FedGL) is an emerging Federated Learning (FL) framework that learns the graph data from various clients to train better Graph Neural networks(GNNs) model. Owing to concerns regarding the secu... 详细信息
来源: 评论