咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 66 篇 会议

馆藏范围

  • 174 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 96 篇 计算机科学与技术...
    • 88 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 生物工程
    • 8 篇 光学工程
    • 7 篇 控制科学与工程
    • 5 篇 土木工程
    • 5 篇 化学工程与技术
    • 5 篇 网络空间安全
    • 3 篇 机械工程
    • 2 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 食品科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 测绘科学与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 33 篇 理学
    • 13 篇 物理学
    • 11 篇 数学
    • 11 篇 生物学
    • 5 篇 化学
    • 3 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 28 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 14 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 12 篇 semantics
  • 8 篇 object detection
  • 7 篇 computational mo...
  • 7 篇 training
  • 6 篇 benchmarking
  • 6 篇 computer vision
  • 5 篇 contrastive lear...
  • 5 篇 computational li...
  • 5 篇 location awarene...
  • 5 篇 visualization
  • 5 篇 codes
  • 4 篇 three-dimensiona...
  • 4 篇 predictive model...
  • 4 篇 benchmark testin...
  • 4 篇 accuracy
  • 3 篇 deep learning
  • 3 篇 distillation
  • 3 篇 anomaly detectio...
  • 3 篇 decoding
  • 3 篇 embeddings

机构

  • 75 篇 shanghai collabo...
  • 62 篇 shanghai key lab...
  • 36 篇 shanghai collabo...
  • 20 篇 microsoft resear...
  • 19 篇 school of comput...
  • 18 篇 school of comput...
  • 13 篇 fudan university
  • 11 篇 shanghai key lab...
  • 9 篇 institute of mod...
  • 9 篇 microsoft cloud ...
  • 8 篇 academy for engi...
  • 7 篇 shanghai ai labo...
  • 7 篇 huya inc
  • 6 篇 shanghai collabo...
  • 6 篇 meituan
  • 5 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 university of ma...
  • 4 篇 zhejiang univers...
  • 4 篇 singapore manage...

作者

  • 67 篇 jiang yu-gang
  • 54 篇 wu zuxuan
  • 24 篇 chen jingjing
  • 23 篇 yu-gang jiang
  • 19 篇 zuxuan wu
  • 13 篇 feng rui
  • 12 篇 chen zhineng
  • 12 篇 zhang yuejie
  • 11 篇 wang junke
  • 11 篇 huang xuanjing
  • 11 篇 yan bo
  • 11 篇 tan weimin
  • 10 篇 qiu xipeng
  • 8 篇 chen dongdong
  • 8 篇 cheng ying
  • 8 篇 jingjing chen
  • 8 篇 dai xiyang
  • 8 篇 zhang qi
  • 8 篇 yuan lu
  • 8 篇 xing zhen

语言

  • 154 篇 英文
  • 20 篇 其他
检索条件"机构=Shanghai Collaborative Innovation Center on Intelligent Visual Computing"
174 条 记 录,以下是1-10 订阅
排序:
Retrieval Augmented Recipe Generation
Retrieval Augmented Recipe Generation
收藏 引用
2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
作者: Liu, Guoshan Yin, Hailong Zhu, Bin Chen, Jingjing Ngo, Chong-Wah Jiang, Yu-Gang School of Computer Science Fudan University Shanghai Key Lab of Intelligent Information Processing China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Singapore Management University Singapore
The growing interest in generating recipes from food images has drawn substantial research attention in recent years. Existing works for recipe generation primarily utilize a two-stage training method - first predicti... 详细信息
来源: 评论
Making Large Language Models Better Reasoners with Orchestrated Streaming Experiences
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Xiangyang He, Junliang Qiu, Xipeng School of Computer Science Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing China
Large language models (LLMs) can perform complex reasoning by generating intermediate thoughts under zero-shot or few-shot settings. However, zero-shot prompting always encounters low performance, and the superior per... 详细信息
来源: 评论
Retrieval Augmented Recipe Generation
Retrieval Augmented Recipe Generation
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Guoshan Liu Hailong Yin Bin Zhu Jingjing Chen Chong-Wah Ngo Yu-Gang Jiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai Collaborative Innovation Center on Intelligent Visual Computing Singapore Management University
The growing interest in generating recipes from food images has drawn substantial research attention in recent years. Existing works for recipe generation primarily utilize a two-stage training method—first predictin... 详细信息
来源: 评论
FOCUS: Towards Universal Foreground Segmentation
arXiv
收藏 引用
arXiv 2025年
作者: You, Zuyao Kong, Lingyu Meng, Lingchen Wu, Zuxuan Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China
Foreground segmentation is a fundamental task in computer vision, encompassing various subdivision tasks. Previous research has typically designed task-specific architectures for each task, leading to a lack of unific... 详细信息
来源: 评论
DuMo: Dual Encoder Modulation Network for Precise Concept Erasure
arXiv
收藏 引用
arXiv 2025年
作者: Han, Feng Chen, Kai Gong, Chao Wei, Zhipeng Chen, Jingjing Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of Computer Science Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China
The exceptional generative capability of text-to-image models has raised substantial safety concerns regarding the generation of Not-Safe-For-Work (NSFW) content and potential copyright infringement. To address these ... 详细信息
来源: 评论
BlockDance: Reuse Structurally Similar Spatio-Temporal Features to Accelerate Diffusion Transformers
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Hui Gao, Tingwei Shao, Jie Wu, Zuxuan Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China ByteDance Intelligent Creation China
Diffusion models have demonstrated impressive generation capabilities, particularly with recent advancements leveraging transformer architectures to improve both visual and artistic quality. However, Diffusion Transfo... 详细信息
来源: 评论
Achieving More with Less: Additive Prompt Tuning for Rehearsal-Free Class-Incremental Learning
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Haoran Wang, Ping Zhou, Zihan Zhang, Xu Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China APUS AI Lab China
Class-incremental learning (CIL) enables models to learn new classes progressively while preserving knowledge of previously learned ones. Recent advances in this field have shifted towards parameter-efficient fine-tun... 详细信息
来源: 评论
Pix2Cap-COCO: Advancing visual Comprehension via Pixel-Level Captioning
arXiv
收藏 引用
arXiv 2025年
作者: You, Zuyao Wang, Junke Kong, Lingyu He, Bo Wu, Zuxuan Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China University of Maryland College Park United States
(Image Present) We present Pix2Cap-COCO, the first panoptic pixel-level caption dataset designed to advance fine-grained visual understanding. To achieve this, we carefully design an automated annotation pipeline that... 详细信息
来源: 评论
EDEN: Enhanced Diffusion for High-quality Large-motion Video Frame Interpolation
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Zihao Chen, Haoran Zhao, Haoyu Lu, Guansong Fu, Yanwei Xu, Hang Wu, Zuxuan Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China Noah’s Ark Lab Huawei Canada
Handling complex or nonlinear motion patterns has long posed challenges for video frame interpolation. Although recent advances in diffusion-based methods offer improvements over traditional optical flow-based approac... 详细信息
来源: 评论
Human-like conceptual representations emerge from language prediction
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ningyu Zhang, Qi Du, Chao Luo, Qiang Qiu, Xipeng Huang, Xuanjing Zhang, Menghan School of Computer Science Fudan University Shanghai China Institute of Modern Languages and Linguistics Fudan University Shanghai China Shanghai Key Laboratory of Intelligent Information Processing Shanghai China Research Institute of Intelligent Complex Systems Fudan University Shanghai China Shanghai Collaborative Innovation Center of Intelligent Visual Computing Shanghai China Ministry of Education Key Laboratory of Contemporary Anthropology Fudan University Shanghai China
People acquire concepts through rich physical and social experiences and use them to understand the world. In contrast, large language models (LLMs), trained exclusively through next-token prediction over language dat... 详细信息
来源: 评论