咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 66 篇 会议

馆藏范围

  • 174 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 112 篇 工学
    • 97 篇 计算机科学与技术...
    • 89 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 生物工程
    • 8 篇 光学工程
    • 7 篇 控制科学与工程
    • 5 篇 土木工程
    • 5 篇 化学工程与技术
    • 5 篇 网络空间安全
    • 3 篇 机械工程
    • 2 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 食品科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 测绘科学与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 32 篇 理学
    • 13 篇 物理学
    • 11 篇 数学
    • 10 篇 生物学
    • 5 篇 化学
    • 3 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 28 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 14 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 12 篇 semantics
  • 8 篇 object detection
  • 7 篇 computational mo...
  • 7 篇 training
  • 6 篇 benchmarking
  • 6 篇 computer vision
  • 5 篇 contrastive lear...
  • 5 篇 computational li...
  • 5 篇 location awarene...
  • 5 篇 visualization
  • 5 篇 codes
  • 4 篇 three-dimensiona...
  • 4 篇 predictive model...
  • 4 篇 benchmark testin...
  • 4 篇 accuracy
  • 3 篇 deep learning
  • 3 篇 distillation
  • 3 篇 anomaly detectio...
  • 3 篇 decoding
  • 3 篇 embeddings

机构

  • 75 篇 shanghai collabo...
  • 63 篇 shanghai key lab...
  • 37 篇 shanghai collabo...
  • 20 篇 microsoft resear...
  • 19 篇 school of comput...
  • 18 篇 school of comput...
  • 13 篇 fudan university
  • 11 篇 shanghai key lab...
  • 9 篇 institute of mod...
  • 9 篇 microsoft cloud ...
  • 8 篇 academy for engi...
  • 7 篇 shanghai ai labo...
  • 7 篇 meituan
  • 7 篇 huya inc
  • 6 篇 shanghai collabo...
  • 5 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 university of ma...
  • 4 篇 zhejiang univers...
  • 4 篇 singapore manage...

作者

  • 68 篇 jiang yu-gang
  • 54 篇 wu zuxuan
  • 25 篇 chen jingjing
  • 23 篇 yu-gang jiang
  • 19 篇 zuxuan wu
  • 13 篇 feng rui
  • 12 篇 chen zhineng
  • 12 篇 zhang yuejie
  • 11 篇 wang junke
  • 11 篇 huang xuanjing
  • 11 篇 yan bo
  • 11 篇 tan weimin
  • 10 篇 qiu xipeng
  • 8 篇 chen dongdong
  • 8 篇 cheng ying
  • 8 篇 jingjing chen
  • 8 篇 jiao yang
  • 8 篇 dai xiyang
  • 8 篇 zhang qi
  • 8 篇 yuan lu

语言

  • 153 篇 英文
  • 21 篇 其他
检索条件"机构=Shanghai Collaborative Innovation Center on Intelligent Visual Computing"
174 条 记 录,以下是51-60 订阅
排序:
BEVNeXt: Reviving Dense BEV Frameworks for 3D Object Detection
BEVNeXt: Reviving Dense BEV Frameworks for 3D Object Detecti...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zhenxin Li Shiyi Lan Jose M. Alvarez Zuxuan Wu Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing NVIDIA
Recently, the rise of query-based Transformer decoders is reshaping camera-based 3D object detection. These query-based decoders are surpassing the traditional dense BEV (Bird's Eye View)-based methods. However, w... 详细信息
来源: 评论
Synthesize, Diagnose, and Optimize: Towards Fine-Grained Vision-Language Understanding
Synthesize, Diagnose, and Optimize: Towards Fine-Grained Vis...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wujian Peng Sicheng Xie Zuyao You Shiyi Lan Zuxuan Wu Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing NVIDIA
Vision language models (VLM) have demonstrated re-markable performance across various downstream tasks. However, understanding fine-grained visual-linguistic con-cepts, such as attributes and inter-object relationship... 详细信息
来源: 评论
Multi-Modality Deep Network for Extreme Learned Image Compression
arXiv
收藏 引用
arXiv 2023年
作者: Jiang, Xuhao Tan, Weimin Tan, Tian Yan, Bo Shen, Liquan School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University Shanghai China School of Communication Shanghai University Shanghai China
Image-based single-modality compression learning approaches have demonstrated exceptionally powerful encoding and decoding capabilities in the past few years, but suffer from blur and severe semantics loss at extremel... 详细信息
来源: 评论
Detection Hub: Unifying Object Detection Datasets via Query Adaptation on Language Embedding
Detection Hub: Unifying Object Detection Datasets via Query ...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Lingchen Meng Xiyang Dai Yinpeng Chen Pengchuan Zhang Dongdong Chen Mengchen Liu Jianfeng Wang Zuxuan Wu Lu Yuan Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft
Combining multiple datasets enables performance boost on many computer vision tasks. But similar trend has not been witnessed in object detection when combining multiple datasets due to two inconsistencies among detec...
来源: 评论
MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth Seeds for 3D Object Detection
MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with ...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yang Jiao Zequn Jie Shaoxiang Chen Jingjing Chen Lin Ma Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Meituan
Fusing LiDAR and camera information is essential for accurate and reliable 3D object detection in autonomous driving systems. This is challenging due to the difficulty of combining multi-granularity geometric and sema...
来源: 评论
Multi-Modality Deep Network for JPEG Artifacts Reduction
arXiv
收藏 引用
arXiv 2023年
作者: Jiang, Xuhao Tan, Weimin Lin, Qing Ma, Chenxi Yan, Bo Shen, Liquan School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University Shanghai China School of Communication Shanghai University Shanghai China
In recent years, many convolutional neural network-based models are designed for JPEG artifacts reduction, and have achieved notable progress. However, few methods are suitable for extreme low-bitrate image compressio... 详细信息
来源: 评论
SPTNET: Span-based Prompt Tuning for Video Grounding
SPTNET: Span-based Prompt Tuning for Video Grounding
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yiren Zhang Yuanwu Xu Mohan Chen Yuejie Zhang Rui Feng Shang Gao School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University School of Information Technology Deakin University
When a Pre-trained Language Model (PLM) is adopted in video grounding task, it usually acts as a text encoder without having its knowledge fully utilized. Also, there exists an inconsistency problem between the pre-tr...
来源: 评论
Conditional Video-Text Reconstruction Network with Cauchy Mask for Weakly Supervised Temporal Sentence Grounding
Conditional Video-Text Reconstruction Network with Cauchy Ma...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Jueqi Wei Yuanwu Xu Mohan Chen Yuejie Zhang Rui Feng Shang Gao School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University School of Information Technology Deakin University
Temporal sentence grounding aims to detect the target segment most related to a given query in an untrimmed video. To alleviate the expensive annotation cost for temporal labels, researchers paid more attention to wea...
来源: 评论
Learning Open-Vocabulary Semantic Segmentation Models From Natural Language Supervision
Learning Open-Vocabulary Semantic Segmentation Models From N...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Jilan Xu Junlin Hou Yuejie Zhang Rui Feng Yi Wang Yu Qiao Weidi Xie Shanghai Key Lab of Intelligent Information Processing School of Computer Science Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University Shanghai AI Laboratory CMIC Shanghai Jiao Tong University
This paper considers the problem of open-vocabulary semantic segmentation (OVS), that aims to segment objects of arbitrary classes beyond a pre-defined, closed-set categories. The main contributions are as follows: Fi...
来源: 评论
M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Junke Wu, Zuxuan Ouyang, Wenhao Han, Xintong Chen, Jingjing Lim, Ser-Nam Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Huya Inc Meta AI
The widespread dissemination of Deepfakes demands effective approaches that can detect perceptually convincing forged images. In this paper, we aim to capture the subtle manipulation artifacts at different scales usin... 详细信息
来源: 评论