咨询与建议

限定检索结果

文献类型

  • 726 篇 期刊文献
  • 337 篇 会议
  • 1 册 图书

馆藏范围

  • 1,064 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 626 篇 理学
    • 442 篇 物理学
    • 135 篇 数学
    • 65 篇 生物学
    • 40 篇 统计学(可授理学、...
    • 21 篇 化学
    • 19 篇 系统科学
  • 572 篇 工学
    • 329 篇 计算机科学与技术...
    • 279 篇 软件工程
    • 124 篇 核科学与技术
    • 64 篇 生物工程
    • 58 篇 信息与通信工程
    • 48 篇 控制科学与工程
    • 43 篇 生物医学工程(可授...
    • 38 篇 电气工程
    • 36 篇 机械工程
    • 36 篇 光学工程
    • 28 篇 电子科学与技术(可...
    • 20 篇 力学(可授工学、理...
    • 19 篇 交通运输工程
    • 18 篇 土木工程
    • 17 篇 化学工程与技术
    • 16 篇 仪器科学与技术
    • 16 篇 材料科学与工程(可...
    • 15 篇 动力工程及工程热...
  • 121 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 43 篇 医学
    • 36 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 21 篇 药学(可授医学、理...
  • 15 篇 法学
  • 11 篇 教育学
  • 7 篇 经济学
  • 7 篇 农学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 65 篇 hadron colliders
  • 54 篇 higgs bosons
  • 30 篇 hadron-hadron sc...
  • 27 篇 relativistic hea...
  • 26 篇 supersymmetric m...
  • 24 篇 top quark
  • 22 篇 w & z bosons
  • 22 篇 particle product...
  • 22 篇 bosons
  • 22 篇 extensions of hi...
  • 21 篇 supersymmetry
  • 21 篇 quark & gluon je...
  • 20 篇 particle data an...
  • 17 篇 deep learning
  • 17 篇 electroweak inte...
  • 17 篇 photons
  • 16 篇 feature extracti...
  • 14 篇 hypothetical par...
  • 14 篇 proton-proton in...
  • 13 篇 superpartners

机构

  • 388 篇 department for p...
  • 376 篇 institute of phy...
  • 356 篇 institute of phy...
  • 331 篇 marian smoluchow...
  • 321 篇 department of ph...
  • 319 篇 faculty of scien...
  • 304 篇 department of ph...
  • 304 篇 kirchhoff-instit...
  • 301 篇 department of ph...
  • 291 篇 department of ph...
  • 290 篇 department of ph...
  • 283 篇 department of ph...
  • 282 篇 instituto de fís...
  • 279 篇 dipartimento di ...
  • 278 篇 west university ...
  • 270 篇 fakultät für phy...
  • 270 篇 graduate school ...
  • 269 篇 department of ph...
  • 269 篇 universidade fed...
  • 260 篇 departamento de ...

作者

  • 249 篇 c. alexa
  • 249 篇 c. amelung
  • 247 篇 g. bella
  • 247 篇 d. calvet
  • 245 篇 j. m. izen
  • 245 篇 j. strandberg
  • 245 篇 n. orlando
  • 245 篇 y. tayalati
  • 245 篇 g. spigo
  • 245 篇 v. chiarella
  • 245 篇 f. siegert
  • 244 篇 a. dimitrievska
  • 244 篇 f. deliot
  • 239 篇 y. abulaiti
  • 236 篇 r. ströhmer
  • 236 篇 m. rijssenbeek
  • 236 篇 s. jin
  • 236 篇 g. gaudio
  • 236 篇 s. mohapatra
  • 235 篇 i. van vulpen

语言

  • 1,018 篇 英文
  • 28 篇 其他
  • 19 篇 中文
检索条件"机构=Shanghai Development Center of Computer Software Technology"
1064 条 记 录,以下是231-240 订阅
排序:
Temporal Aggregation and Propagation Graph Neural Networks for Dynamic Representation
arXiv
收藏 引用
arXiv 2023年
作者: Zheng, Tongya Wang, Xinchao Feng, Zunlei Song, Jie Hao, Yunzhi Song, Mingli Wang, Xingen Wang, Xinyu Chen, Chun The Big Graph Center College of Computer Science of Hangzhou City University China The College of Computer Science of Zhejiang University Hangzhou China The Department of Electrical and Computer Enigneering National University of Singapore Singapore The School of Software Technology Zhejiang University Hangzhou China The College of Computer Science Zhejiang University Hangzhou China The ZJU-Bangsun Joint Research Center The Shanghai Institute for Advanced Study Zhejiang University Hangzhou China
Temporal graphs exhibit dynamic interactions between nodes over continuous time, whose topologies evolve with time elapsing. The whole temporal neighborhood of nodes reveals the varying preferences of nodes. However, ... 详细信息
来源: 评论
Cdga: A GAN-based Controllable Domain Generation Algorithm
Cdga: A GAN-based Controllable Domain Generation Algorithm
收藏 引用
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
作者: You Zhai Jian Yang Zixiang Wang Longtao He Liqun Yang Zhoujun Li State Key Lab of Software Development Environment Beihang University National Computer Network Emergency Response Technical Team Coordination Center of China School of Cyber Science and Technology Beihang University
Recently Command and Control (C&C) servers have attracted considerable attention in botnets and domain generation algorithms (DGAs) further enhance the stealth of C&C servers. However, Algorithmically Generate... 详细信息
来源: 评论
STCG: State-Aware Test Case Generation for Simulink Models  23
STCG: State-Aware Test Case Generation for Simulink Models
收藏 引用
Proceedings of the 60th Annual ACM/IEEE Design Automation Conference
作者: Zhuo Su Zehong Yu Dongyan Wang Yixiao Yang Rui Wang Wanli Chang Aiguo Cui Yu Jiang KLISS BNRist School of Software Tsinghua University Beijing China Information Technology Center Renmin University of China Beijing China Information Engineering College Capital Normal University Beijing China Department of Computer Science University of York York United Kingdom HUAWEI Technologies Co. LTD. Shanghai China
Simulink has been widely used in system design, which supports the efficient modeling and synthesis of embedded controllers, with automatic test case generation to simulate and validate the correctness of the construc... 详细信息
来源: 评论
BRFL: A Blockchain-based Byzantine-Robust Federated Learning Model
arXiv
收藏 引用
arXiv 2023年
作者: Li, Yang Xia, Chunhe Li, Chang Wang, Tianbo The Key Laboratory of Beijing Network Technology Beihang University Beijing100191 China The Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing Guangxi Normal University Guilin541004 China The School of Computer Science and Technology Zhengzhou University of Light Industry Zhengzhou450000 China The School of Cyber Science and Technology Beihang University Beijing100191 China The Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai201112 China
With the increasing importance of machine learning, the privacy and security of training data have become critical. Federated learning, which stores data in distributed nodes and shares only model parameters, has gain... 详细信息
来源: 评论
An acceleration method of optical flow calculation for automotive ADAS
An acceleration method of optical flow calculation for autom...
收藏 引用
IEEE International Conference on Big Data and Cloud Computing (BdCloud)
作者: Wenjie Chen Ruixin Sun Zhilei Chai MoE Engineering Research Center for Software/Hardware Co-design Technology East China Normal University Shanghai China School of artificial Intelligence and computer science Jiangnan University Wuxi China
An essential component of advanced driver assistance systems (ADAS) is the real-time processing of various image types that are perceived by multiple sources. Although the optical flow is a crucial tool for determinin... 详细信息
来源: 评论
A Data-Driven Near-Optimization Approach for Smart Parking Management Platforms  18
A Data-Driven Near-Optimization Approach for Smart Parking M...
收藏 引用
18th IEEE International Conference on Networking, Sensing and Control, ICNSC 2021
作者: Bai, Mingyan Zhong, Shenghua Yan, Pengyu Chen, Zhibin Zhang, Zhixian University of Electronic Science and Technology of China School of Management and Economics Chengdu China Chengdu Communication Investment Group Intelligent Parking Industrial Development Company Ltd Chengdu China NYU Shanghai Division of Engineering and Computer Science Center for Data Science and Artificial Intelligence Shanghai China China Telecom Research Institute Shanghai China
This paper addresses an allocation optimization problem of parking slots in a real-time parking reservation platform in which parking demands randomly show up. For each decision period of a finite horizon, the reserva... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj Computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
H2-MARL: Multi-Agent Reinforcement Learning for Pareto Optimality in Hospital Capacity Strain and Human Mobility during Epidemic
arXiv
收藏 引用
arXiv 2025年
作者: Luo, Xueting Deng, Hao Yang, Jihong Shen, Yao Guo, Huanhuan Sun, Zhiyuan Liu, Mingqing Wei, Jiming Zhao, Shengjie School of Computer Science and Technology Tongji University Shanghai201804 China China Land Surveying and Planning Institute Beijing100035 China College of Architecture and Urban Planning Tongji University Shanghai200092 China Chongqing Institute of Planning and Natural Resources Investigation and Monitoring Chongqing401121 China Li-Fi Research and Development Centre University of Cambridge CambridgeCB3 0FA United Kingdom Guangdong Urban-rural Planning and Design Research Institute Technology Group Co. Ltd. Guangzhou510290 China Engineering Research Center of Key Software Technologies for Smart City Perception and Planning Ministry of Education Shanghai201804 China
The necessity of achieving an effective balance between minimizing the losses associated with restricting human mobility and ensuring hospital capacity has gained significant attention in the aftermath of COVID-19. Re... 详细信息
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
Anomaly detection in multi-class time series  4
Anomaly detection in multi-class time series
收藏 引用
2021 4th International Conference on Mechatronics and computer technology Engineering, MCTE 2021
作者: Wang, Weihong Wu, Zhuolin Liu, Xuan Jia, Lei Wang, Xiaoguang College of Computer Science and Technology Zhejiang University of Technology Zhejiang Hangzhou310000 China Faculty of Computer Science Dalhousie University HalifaxNSB3H 4R2 Canada Research and Development Center of Agricultural Bank of China Zhejiang Hangzhou310000 China Beijing Broada Software Ltd Zhejiang Hangzhou310000 China
For modern operation and maintenance systems, they are usually required to monitor multiple types and large quantities of machine's key performance indicators (KPIs) at the same time with limited resources. In thi... 详细信息
来源: 评论