咨询与建议

限定检索结果

文献类型

  • 632 篇 会议
  • 597 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,231 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 851 篇 工学
    • 630 篇 计算机科学与技术...
    • 543 篇 软件工程
    • 209 篇 信息与通信工程
    • 139 篇 生物工程
    • 116 篇 控制科学与工程
    • 113 篇 光学工程
    • 86 篇 生物医学工程(可授...
    • 70 篇 电气工程
    • 58 篇 电子科学与技术(可...
    • 51 篇 化学工程与技术
    • 48 篇 机械工程
    • 27 篇 仪器科学与技术
    • 25 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 22 篇 网络空间安全
    • 20 篇 土木工程
  • 481 篇 理学
    • 234 篇 数学
    • 155 篇 生物学
    • 143 篇 物理学
    • 74 篇 统计学(可授理学、...
    • 53 篇 化学
    • 27 篇 系统科学
  • 261 篇 管理学
    • 162 篇 图书情报与档案管...
    • 110 篇 管理科学与工程(可...
    • 42 篇 工商管理
  • 72 篇 医学
    • 58 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 33 篇 法学
    • 33 篇 社会学
  • 13 篇 经济学
  • 10 篇 农学
  • 6 篇 教育学
  • 3 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 64 篇 semantics
  • 47 篇 training
  • 46 篇 feature extracti...
  • 30 篇 object detection
  • 27 篇 convolution
  • 24 篇 visualization
  • 23 篇 deep learning
  • 22 篇 machine learning
  • 22 篇 computer vision
  • 20 篇 deep neural netw...
  • 20 篇 task analysis
  • 19 篇 image segmentati...
  • 19 篇 computational mo...
  • 18 篇 signal processin...
  • 16 篇 predictive model...
  • 16 篇 accuracy
  • 15 篇 contrastive lear...
  • 15 篇 benchmarking
  • 14 篇 robustness
  • 13 篇 pattern recognit...

机构

  • 155 篇 shanghai key lab...
  • 110 篇 school of comput...
  • 93 篇 shanghai key lab...
  • 78 篇 shanghai key lab...
  • 54 篇 school of comput...
  • 48 篇 academy for engi...
  • 45 篇 school of comput...
  • 44 篇 institute of sci...
  • 35 篇 shanghai key lab...
  • 31 篇 shanghai key lab...
  • 27 篇 shanghai center ...
  • 22 篇 fudan university
  • 22 篇 school of data s...
  • 22 篇 shanghai enginee...
  • 21 篇 university of ch...
  • 21 篇 school of comput...
  • 20 篇 shanghai key lab...
  • 18 篇 department of co...
  • 18 篇 school of inform...
  • 17 篇 shanghai collabo...

作者

  • 54 篇 feng rui
  • 52 篇 jiang yu-gang
  • 51 篇 zhang wenqiang
  • 49 篇 zhang junping
  • 41 篇 fu yanwei
  • 41 篇 li wei
  • 41 篇 zhang yuejie
  • 38 篇 zhou shuigeng
  • 38 篇 shuigeng zhou
  • 37 篇 xue xiangyang
  • 37 篇 shan hongming
  • 32 篇 huang xuanjing
  • 29 篇 rui feng
  • 28 篇 junping zhang
  • 28 篇 jihong guan
  • 24 篇 hongming shan
  • 24 篇 qiu xipeng
  • 22 篇 chen jingjing
  • 22 篇 wu zuxuan
  • 21 篇 zhang tao

语言

  • 1,116 篇 英文
  • 91 篇 其他
  • 28 篇 中文
检索条件"机构=Shanghai Key Lab of Intelligent Information Processing School of Computer Science and Technology"
1231 条 记 录,以下是311-320 订阅
排序:
CausalAPM: Generalizable Literal Disentanglement for NLU Debiasing
arXiv
收藏 引用
arXiv 2023年
作者: Gao, Songyang Dou, Shihan Shan, Junjie Zhang, Qi Huang, Xuanjing School of Computer Science Fudan University Shanghai China KTH Royal Institute of Technology Stockholm Sweden Shanghai Key Laboratory of Intelligent Information Processing Fudan University China
Dataset bias, i.e., the over-reliance on dataset-specific literal heuristics, is getting increasing attention for its detrimental effect on the generalization ability of NLU models. Existing works focus on eliminating... 详细信息
来源: 评论
Denoising diffusion path: attribution noise reduction with an auxiliary diffusion model  24
Denoising diffusion path: attribution noise reduction with a...
收藏 引用
Proceedings of the 38th International Conference on Neural information processing Systems
作者: Yiming Lei Zilong Li Junping Zhang Hongming Shan Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Institute of Science and Technology for Brain-Inspired Intelligence & MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence & MOE Frontiers Center for Brain Science Fudan University
The explainability of deep neural networks (DNNs) is critical for trust and reliability in AI systems. Path-based attribution methods, such as integrated gradients (IG), aim to explain predictions by accumulating grad...
来源: 评论
Adaptive Split-Fusion Transformer
Adaptive Split-Fusion Transformer
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zixuan Su Jingjing Chen Lei Pang Chong-Wah Ngo Yu-Gang Jiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing City University of Hong Kong Singapore Management University
Neural networks for visual content understanding have recently evolved from convolutional ones to transformers. The prior (CNN) relies on small-windowed kernels to capture the regional clues, demonstrating solid local...
来源: 评论
A Holistically Point-guided Text Framework for Weakly-Supervised Camouflaged Object Detection
arXiv
收藏 引用
arXiv 2025年
作者: Mok, Tsui Qin Gao, Shuyong Xing, Haozhe He, Miaoyang Wang, Yan Zhang, Wenqiang Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Academy for Engineering & Technology The Yiwu Research Institute of Fudan University Chengbei Road Zhejiang Yiwu City322000 China
Weakly-Supervised Camouflaged Object Detection (WSCOD) has gained popularity for its promise to train models with weak labels to segment objects that visually blend into their surroundings. Recently, some methods usin... 详细信息
来源: 评论
Towards End-to-End Unsupervised Saliency Detection with Self-Supervised Top-Down Context
arXiv
收藏 引用
arXiv 2023年
作者: Song, Yicheng Gao, Shuyong Xing, Haozhe Cheng, Yiting Wang, Yan Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Keenon Robotics Co. Ltd. Shanghai China Academy for Engineering & Technology Fudan University Shanghai China
Unsupervised salient object detection aims to detect salient objects without using supervision signals eliminating the tedious task of manually labeling salient objects. To improve training efficiency, end-to-end meth... 详细信息
来源: 评论
D2SP: Dynamic Dual-Stage Purification Framework for Dual Noise Mitigation in Vision-based Affective Recognition.
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Haoran Mai, Xinji Tao, Zeng Tong, Xuan Lin, Junxiong Wang, Yan Yu, Jiawen Wang, Boyang Yan, Shaoqi Zhao, Qing Zhou, Ziheng Gao, Shuyong Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China School of Information Science and Technology Fudan University Shanghai China Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
The contemporary state-of-the-art of Dynamic Facial Expression Recognition (DFER) technology facilitates remarkable progress by deriving emotional mappings of facial expressions from video content, underpinned by trai... 详细信息
来源: 评论
Semi-Supervised Self-Learning Enhanced Music Emotion Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Yifu Zhang, Xulong Zhou, Monan Li, Wei School of Computer Science and Technology Fudan University Shanghai China Ping An Technology Co. Ltd. Shenzhen China Department of Music AI and Information Technology Central Conservatory of Music Beijing China Shanghai Key Laboratory of Intelligent Information Processing Fudan University Shanghai China
Music emotion recognition (MER) aims to identify the emotions conveyed in a given musical piece. However, currently, in the field of MER, the available public datasets have limited sample sizes. Recently, segment-base... 详细信息
来源: 评论
StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot Learning
arXiv
收藏 引用
arXiv 2023年
作者: Fu, Yuqian Xie, Yu Fu, Yanwei Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China Purple Mountain Laboratories Nanjing China School of Data Science Fudan University China
Cross-Domain Few-Shot Learning (CD-FSL) is a recently emerging task that tackles few-shot learning across different domains. It aims at transferring prior knowledge learned on the source dataset to novel target datase... 详细信息
来源: 评论
QMix: Quality-aware Learning with Mixed Noise for Robust Retinal Disease Diagnosis
收藏 引用
IEEE Transactions on Medical Imaging 2025年 PP卷 PP页
作者: Hou, Junlin Xu, Jilan Feng, Rui Chen, Hao Hong Kong University of Science and Technology Department of Computer Science and Engineering Hong Kong Fudan University School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Shanghai China HKUST Department of Chemical and Biological Engineering Division of Life Science Hong Kong HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Shenzhen China
Due to the complex nature of medical image acquisition and annotation, medical datasets inevitably contain noise. This adversely affects the robustness and generalization of deep neural networks. Previous noise learni... 详细信息
来源: 评论
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Language-Image Pre-Training  24
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Lang...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Li, Yudong Hou, Xianxu Dezhi, Zheng Shen, Linlin Zhao, Zhe School of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Tencent AI Lab Beijing China
While significant progress has been made in multi-modal learning driven by large-scale image-text datasets, there is still a noticeable gap in the availability of such datasets within the facial domain. To facilitate ... 详细信息
来源: 评论