咨询与建议

限定检索结果

文献类型

  • 632 篇 会议
  • 598 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 850 篇 工学
    • 626 篇 计算机科学与技术...
    • 545 篇 软件工程
    • 211 篇 信息与通信工程
    • 138 篇 生物工程
    • 114 篇 光学工程
    • 110 篇 控制科学与工程
    • 85 篇 生物医学工程(可授...
    • 68 篇 电气工程
    • 59 篇 电子科学与技术(可...
    • 51 篇 化学工程与技术
    • 49 篇 机械工程
    • 28 篇 仪器科学与技术
    • 25 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 22 篇 网络空间安全
    • 21 篇 土木工程
  • 482 篇 理学
    • 234 篇 数学
    • 155 篇 生物学
    • 144 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 52 篇 化学
    • 27 篇 系统科学
  • 263 篇 管理学
    • 163 篇 图书情报与档案管...
    • 111 篇 管理科学与工程(可...
    • 42 篇 工商管理
  • 70 篇 医学
    • 57 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 34 篇 法学
    • 34 篇 社会学
  • 13 篇 经济学
  • 10 篇 农学
  • 7 篇 教育学
  • 3 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 65 篇 semantics
  • 47 篇 feature extracti...
  • 46 篇 training
  • 29 篇 object detection
  • 27 篇 convolution
  • 23 篇 deep learning
  • 23 篇 visualization
  • 22 篇 machine learning
  • 22 篇 computer vision
  • 20 篇 deep neural netw...
  • 20 篇 task analysis
  • 20 篇 computational mo...
  • 19 篇 image segmentati...
  • 18 篇 signal processin...
  • 18 篇 accuracy
  • 16 篇 predictive model...
  • 15 篇 contrastive lear...
  • 15 篇 benchmarking
  • 15 篇 robustness
  • 13 篇 pattern recognit...

机构

  • 156 篇 shanghai key lab...
  • 109 篇 school of comput...
  • 92 篇 shanghai key lab...
  • 81 篇 shanghai key lab...
  • 54 篇 school of comput...
  • 48 篇 school of comput...
  • 48 篇 academy for engi...
  • 44 篇 institute of sci...
  • 35 篇 shanghai key lab...
  • 30 篇 shanghai key lab...
  • 27 篇 shanghai center ...
  • 22 篇 fudan university
  • 22 篇 school of data s...
  • 22 篇 shanghai enginee...
  • 21 篇 university of ch...
  • 21 篇 school of comput...
  • 20 篇 shanghai key lab...
  • 18 篇 department of co...
  • 18 篇 school of inform...
  • 17 篇 shanghai collabo...

作者

  • 53 篇 feng rui
  • 52 篇 jiang yu-gang
  • 51 篇 zhang wenqiang
  • 49 篇 zhang junping
  • 43 篇 li wei
  • 41 篇 fu yanwei
  • 41 篇 zhang yuejie
  • 38 篇 zhou shuigeng
  • 38 篇 shuigeng zhou
  • 37 篇 xue xiangyang
  • 37 篇 shan hongming
  • 32 篇 huang xuanjing
  • 29 篇 rui feng
  • 28 篇 junping zhang
  • 28 篇 jihong guan
  • 24 篇 hongming shan
  • 24 篇 qiu xipeng
  • 22 篇 chen jingjing
  • 22 篇 wu zuxuan
  • 21 篇 zhang tao

语言

  • 1,036 篇 英文
  • 172 篇 其他
  • 31 篇 中文
检索条件"机构=Shanghai Key Lab of Intelligent Information Processing School of Computer Science and Technology"
1232 条 记 录,以下是941-950 订阅
排序:
Neural aesthetic image reviewer
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Wenshan Yang, Su Zhang, Weishan Zhang, Jiulong Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University China University of Petroleum Xi'an University of Technology
Recently, there is a rising interest in perceiving image aesthetics. The existing works deal with image aesthetics as a classification or regression problem. To extend the cognition from rating to reasoning, a deeper ... 详细信息
来源: 评论
An Early Stage Researcher's Primer on Systems Medicine Terminology
Network and Systems Medicine
收藏 引用
Network and Systems Medicine 2021年 第1期4卷 2-50页
作者: Zanin, Massimiliano Aitya, Nadim A.A. Basilio, José Baumbach, Jan Benis, Arriel Behera, Chandan K. Bucholc, Magda Castiglione, Filippo Chouvarda, Ioanna Comte, Blandine Dao, Tien-Tuan Ding, Xuemei Pujos-Guillot, Estelle Filipovic, Nenad Finn, David P. Glass, David H. Harel, Nissim Iesmantas, Tomas Ivanoska, Ilinka Joshi, Alok Boudjeltia, Karim Zouaoui Kaoui, Badr Kaur, Daman Maguire, Liam P. McClean, Paula L. McCombe, Niamh De Miranda, João Luís Moisescu, Mihnea Alexandru Pappalardo, Francesco Polster, Annikka Prasad, Girijesh Rozman, Damjana Sacala, Ioan Sanchez-Bornot, Jose M. Schmid, Johannes A. Sharp, Trevor Solé-Casals, Jordi Spiwok, Vojtěch Spyrou, George M. Stalidzans, Egils Stres, Blaa Sustersic, Tijana Symeonidis, Ioannis Tieri, Paolo Todd, Stephen Van Steen, Kristel Veneva, Milena Wang, Da-Hui Wang, Haiying Wang, Hui Watterson, Steven Wong-Lin, Kongfatt Yang, Su Zou, Xin Schmidt, Harald H.H.W. Centro de Tecnología Biomédica Universidad Politécnica de Madrid Madrid Spain Intelligent Systems Research Centre School of Computing Engineering and Intelligent Systems Ulster University Ulster United Kingdom Center for Physiology and Pharmacology Institute of Vascular Biology and Thrombosis Research Medical University of Vienna Vienna Austria TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany Holon Israel CNR National Research Council IAC Institute for Applied Computing Rome Italy Lab of Computing Medical Informatics and Biomedical Imaging Technologies School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece Université Clermont Auvergne INRAE UNH Plateforme d'Exploration du Métabolisme MetaboHUB Clermont Clermont-Ferrand France Université de Technologie de Compiègne Compiègne France Labex MS2T Control of Technological Systems-of-Systems CNRS and Université de Technologie de Compiègne Compiègne France Faculty of Engineering University of Kragujevac Kragujevac Serbia Kragujevac Serbia Steinbeis Advanced Risk Technologies Institute Doo Kragujevac Kragujevac Serbia Pharmacology and Therapeutics School of Medicine Galway Neuroscience Centre National University of Ireland Galway Ireland School of Computing Ulster University Ulster United Kingdom Holon Israel Department of Mathematics and Natural Sciences Kaunas University of Technology Kaunas Lithuania Faculty of Computer Science and Engineering Ss. Cyril and Methodius University Skopje Macedonia Medicine Faculty Université Libre de Bruxelles CHU de Charleroi Charleroi Belgium Northern Ireland Centre for Stratified Medicine Biomedical Sciences Research Institute Ulster University Ulster United Kingdom Escola Superior de Tecnologia e Gestão Instituto Politécnico de Portalegre Portalegre Portugal Instituto Superior Técnico Universidade de Lisboa Lisboa Portugal Faculty of Automatic Control and Computers University Politehnica of B
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, ... 详细信息
来源: 评论
A Novel Experience-Based Exploration Method for Q-Learning
A Novel Experience-Based Exploration Method for Q-Learning
收藏 引用
2018国际计算机前沿大会(原国际青年计算机大会)
作者: Bohong Yang Hong Lu Baogen Li Zheng Zhang Wenqiang Zhang Shanghai Key Laboratory of Intelligent Information Processing School of Computer ScienceFudan University Shanghai Engineering Research Center for Video Technology and System School of Computer ScienceFudan University School of Computer Science New York University Shanghai
Reinforcement learning algorithms are used to deal with a lot of sequential problems, such as playing games, mechanical control,and so on. Q-Learning is a model-free reinforcement learning *** traditional Q-learning a... 详细信息
来源: 评论
BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2023年 第6期20卷 824-835页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is r...
来源: 评论
A Multiscale Superpixel-Level Salient Object Detection Model Using Local-Global Contrast Cue
收藏 引用
Journal of shanghai Jiaotong university(science) 2017年 第1期22卷 121-128页
作者: 穆楠 徐新 王英林 张晓龙 School of Computer Science and Technology Wuhan University of Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System Wuhan University of Science and Technology School of Information Management and Engineering Shanghai University of Finance and Economics
The goal of salient object detection is to estimate the regions which are most likely to attract human's visual attention. As an important image preprocessing procedure to reduce the computational complexity, sali... 详细信息
来源: 评论
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
arXiv
收藏 引用
arXiv 2020年
作者: Lugmayr, Andreas Danelljan, Martin Timofte, Radu Ahn, Namhyuk Bai, Dongwoon Cai, Jie Cao, Yun Chen, Junyang Cheng, Kaihua Chun, SeYoung Deng, Wei El-Khamy, Mostafa Man Ho, Chiu Ji, Xiaozhong Kheradmand, Amin Kim, Gwantae Ko, Hanseok Lee, Kanghyu Lee, Jungwon Li, Hao Liu, Ziluan Liu, Zhi-Song Liu, Shuai Lu, Yunhua Meng, Zibo Navarrete Michelini, Pablo Micheloni, Christian Prajapati, Kalpesh Ren, Haoyu Hyeok Seo, Yong Siu, Wan-Chi Sohn, Kyung-Ah Tai, Ying Muhammad Umer, Rao Wang, Shuangquan Wang, Huibing Haoning Wu, Timothy Wu, Haoning Yang, Biao Yang, Fuzhi Yoo, Jaejun Zhao, Tongtong Zhou, Yuanbo Zhuo, Haijie Zong, Ziyao Zou, Xueyi Wang, Li-Wen Cani, Marie-Paule Siu, Wan-Chi Yang, Huan Fu, Jianlong Shi, Yukai Chen, Junyang Lee, Kanghyu Park, Jaihyun Lee, Junyeop Min, Jeongki Lee, Bokyeung Ko, Hanseok Yoo, Jaejun Sohn, Kyung-Ah Micheloni, Christian Hu, Fengshuo Wang, Yanhong Lu, Yunhua Peng, Jinjia Wang, Huibing Zhuo, Haijie Lee, Junyeop Min, Jeongki Lee, Bokyeung Park, Jaihyun Ko, Hanseok Tai, lab Ying Jilin Li, Youtu lab Liu, Shuai Yang, Biao Liu, Xing Chen, Shuaijun Zhao, Lei Wang, Zhan Lin, Yuxuan Jia, Xu Gao, Qinquan Deng, Wei Kheradmand, Amin El-Khamy, Mostafa Wang, Shuangquan Bai, Dongwoon Lee, Jungwon Patel, Heena Chudasama, Vishal Upla, Kishor Ramachandra, Raghavendra Raja, Kiran Busch, Christoph Meng, Zibo Ho, Chiu Man Computer Vision Lab ETH Zurich Switzerland LIX - Computer science laboratory at the cole polytechnique Palaiseau France Center of Multimedia Signal Processing Hong Kong Polytechnic University Hong Kong Shanghai Jiao Tong University China Microsoft Research Beijing China Guangdong University of Technology China Intelligent Signal Processing Laboratory Korea University Korea Republic of Ajou University Korea Republic of EPFL University of Udine Italy BOE Technology Group Co. Ltd Dalian Maritime University China Guangdong OPPO Mobile Telecommunications Corp. Ltd Department of Video Information Processing Korea University Korea Republic of School of Electrical Engineering Korea University Korea Republic of Tencent Youtu Lab Yun Cao Tencent Youtu Tencent Youtu Lab Chengjie Wang Tencent Tencent Youtu Lab Feiyue Huang Tencent Youtu Lab Peking University China North China University of Technology China Huawei Technologies Co. Ltd China Fuzhou University Tong Tong Fuzhou University Imperial Vision Technology China Fuzhou University Imperial Vision Technology China Imperial Vision Technology SOC R&D Samsung Semiconductor Inc. United States Ulsan national institute of science and technology Korea Republic of Sardar Vallabhbhai National Institute Of Technology Surat India Norwegian University of Science and Technology Gjøvik Norway InnoPeak Technology
This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-res... 详细信息
来源: 评论
Deep Learning in Digital Breast Tomosynthesis: Current Status, Challenges, and Future Trends
MedComm
收藏 引用
MedComm 2025年 第6期6卷 e70247页
作者: Wang, Ruoyun Chen, Fanxuan Chen, Haoman Lin, Chenxing Shuai, Jincen Wu, Yutong Ma, Lixiang Hu, Xiaoqu Wu, Min Wang, Jin Zhao, Qi Shuai, Jianwei Pan, Jingye Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China Wenzhou Medical University Wenzhou China UCSC Baskin School of Engineering University of California Santa Cruz CA United States Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province Wenzhou China Department of Anatomy Histology & Embryology School of Basic Medical Sciences Fudan University Shanghai China Department of Medicine Harvard Medical School and Brigham and Women's Hospital Boston MA United States Joint Research Centre on Medicine The Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China Stony Brook University Stony Brook NY United States School of Computer Science and Software Engineering University of Science and Technology Liaoning Anshan China Department of Big Data in Health Science The First Affiliated Hospital of Wenzhou Medical University Wenzhou China Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization Wenzhou China
The high-resolution three-dimensional (3D) images generated with digital breast tomosynthesis (DBT) in the screening of breast cancer offer new possibilities for early disease diagnosis. Early detection is especially ... 详细信息
来源: 评论
U-Net: Machine reading comprehension with unanswerable questions
arXiv
收藏 引用
arXiv 2018年
作者: Sun, Fu Li, Linyang Qiu, Xipeng Liu, Yang Shanghai Key Laboratory of Intelligent Information Processing Fudan University School of Computer Science Fudan University Liulishuo Silicon Valley AI Lab
Machine reading comprehension with unanswerable questions is a new challenging task for natural language processing. A key subtask is to reliably predict whether the question is unanswerable. In this paper, we propose... 详细信息
来源: 评论
Pixel2Mesh: Generating 3D mesh models from single RGB images
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Nanyang Zhang, Yinda Li, Zhuwen Fu, Yanwei Liu, Wei Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Princeton University Intel Labs School of Data Science Fudan University Tencent AI Lab
We propose an end-to-end deep learning architecture that produces a 3D shape in triangular mesh from a single color image. Limited by the nature of deep neural network, previous methods usually represent a 3D shape in... 详细信息
来源: 评论
Facial aging and rejuvenation by conditional multi-adversarial autoencoder with ordinal regression
arXiv
收藏 引用
arXiv 2018年
作者: Zhu, Haiping Zhou, Qi Zhang, Junping Wang, James Z. Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China College of Information Sciences and Technology Pennsylvania State University University ParkPA16802 United States
Facial aging and facial rejuvenation analyze a given face photograph to predict a future look or estimate a past look of the person. To achieve this, it is critical to preserve human identity and the corresponding agi... 详细信息
来源: 评论