咨询与建议

限定检索结果

文献类型

  • 914 篇 期刊文献
  • 866 篇 会议
  • 2 册 图书

馆藏范围

  • 1,782 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,221 篇 工学
    • 909 篇 计算机科学与技术...
    • 787 篇 软件工程
    • 290 篇 信息与通信工程
    • 199 篇 生物工程
    • 136 篇 光学工程
    • 127 篇 控制科学与工程
    • 101 篇 生物医学工程(可授...
    • 72 篇 电气工程
    • 72 篇 化学工程与技术
    • 66 篇 机械工程
    • 66 篇 电子科学与技术(可...
    • 32 篇 仪器科学与技术
    • 29 篇 建筑学
    • 28 篇 土木工程
    • 25 篇 交通运输工程
    • 25 篇 安全科学与工程
  • 700 篇 理学
    • 356 篇 数学
    • 218 篇 生物学
    • 191 篇 物理学
    • 96 篇 统计学(可授理学、...
    • 71 篇 化学
    • 33 篇 系统科学
  • 370 篇 管理学
    • 238 篇 图书情报与档案管...
    • 146 篇 管理科学与工程(可...
    • 54 篇 工商管理
  • 79 篇 医学
    • 64 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 30 篇 公共卫生与预防医...
    • 29 篇 药学(可授医学、理...
  • 47 篇 法学
    • 47 篇 社会学
  • 17 篇 经济学
  • 13 篇 农学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 97 篇 semantics
  • 65 篇 feature extracti...
  • 52 篇 training
  • 36 篇 convolution
  • 34 篇 deep learning
  • 34 篇 machine learning
  • 32 篇 object detection
  • 29 篇 deep neural netw...
  • 28 篇 task analysis
  • 28 篇 visualization
  • 27 篇 computational li...
  • 27 篇 computer vision
  • 26 篇 image segmentati...
  • 24 篇 signal processin...
  • 22 篇 computational mo...
  • 20 篇 contrastive lear...
  • 20 篇 predictive model...
  • 20 篇 benchmarking
  • 19 篇 data mining
  • 19 篇 accuracy

机构

  • 236 篇 school of comput...
  • 210 篇 shanghai key lab...
  • 154 篇 shanghai key lab...
  • 148 篇 shanghai key lab...
  • 101 篇 school of comput...
  • 72 篇 shanghai key lab...
  • 46 篇 academy for engi...
  • 44 篇 school of comput...
  • 44 篇 institute of sci...
  • 37 篇 shanghai key lab...
  • 33 篇 institute of mod...
  • 31 篇 shanghai key lab...
  • 31 篇 school of data s...
  • 29 篇 school of inform...
  • 27 篇 shanghai center ...
  • 24 篇 fudan university
  • 23 篇 school of comput...
  • 22 篇 university of ch...
  • 21 篇 shanghai enginee...
  • 21 篇 school of comput...

作者

  • 124 篇 huang xuanjing
  • 114 篇 qiu xipeng
  • 78 篇 xue xiangyang
  • 62 篇 jiang yu-gang
  • 60 篇 zhang qi
  • 55 篇 zhang yuejie
  • 54 篇 zhang junping
  • 53 篇 zhang wenqiang
  • 52 篇 feng rui
  • 48 篇 fu yanwei
  • 43 篇 zhang zhongzhi
  • 41 篇 gui tao
  • 41 篇 li wei
  • 40 篇 zhou shuigeng
  • 38 篇 shuigeng zhou
  • 35 篇 shan hongming
  • 34 篇 li bin
  • 32 篇 tao zhang
  • 32 篇 junping zhang
  • 32 篇 rui feng

语言

  • 1,676 篇 英文
  • 75 篇 其他
  • 33 篇 中文
检索条件"机构=Shanghai Key Lab of Intelligent Information Processing and School of Computer Science"
1782 条 记 录,以下是331-340 订阅
排序:
Conditional Video-Text Reconstruction Network with Cauchy Mask for Weakly Supervised Temporal Sentence Grounding
Conditional Video-Text Reconstruction Network with Cauchy Ma...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Jueqi Wei Yuanwu Xu Mohan Chen Yuejie Zhang Rui Feng Shang Gao School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University School of Information Technology Deakin University
Temporal sentence grounding aims to detect the target segment most related to a given query in an untrimmed video. To alleviate the expensive annotation cost for temporal labels, researchers paid more attention to wea...
来源: 评论
Adaptively feature matching via joint transformational-spatial clustering
Adaptively feature matching via joint transformational-spati...
收藏 引用
作者: Wang, Linbo Tan, Li Fang, Xianyong Guo, Yanwen Wan, Shaohua MOE Key Laboratory of Intelligent Computing and Signal Processing School of Computer Science and Technology Anhui University Hefei China National Key Lab for Novel Software Technology Nanjing University Nanjing China School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan China
The transformational and spatial proximities are important cues for identifying inliers from an appearance based match set because correct matches generally stay close in input images and share similar local transform... 详细信息
来源: 评论
MR-MLLM: Mutual Reinforcement of Multimodal Comprehension and Vision Perception
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Guanqun Wei, Xinyu Liu, Jiaming Zhang, Ray Zhang, Yichi Zhang, Kevin Chong, Maurice Zhang, Shanghang National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China Shanghai AI Lab China
In recent years, multimodal large language models (MLLMs) have shown remarkable capabilities in tasks like visual question answering and common sense reasoning, while visual perception models have made significant str... 详细信息
来源: 评论
Decorrelate Irrelevant, Purify Relevant: Overcome Textual Spurious Correlations from a Feature Perspective  29
Decorrelate Irrelevant, Purify Relevant: Overcome Textual Sp...
收藏 引用
29th International Conference on Computational Linguistics, COLING 2022
作者: Dou, Shihan Zheng, Rui Wu, Ting Gao, Songyang Shan, Junjie Zhang, Qi Wu, Yueming Huang, Xuanjing School of Computer Science Fudan University Shanghai China Shanghai Key Laboratory of Intelligent Information Processing Fudan University China KTH Royal Institute of Technology Stockholm Sweden Nanyang Technological University Singapore
Natural language understanding (NLU) models tend to rely on spurious correlations (i.e., dataset bias) to achieve high performance on in-distribution datasets but poor performance on out-of-distribution ones. Most of ...
来源: 评论
Cloud-Device Collaborative Learning for Multimodal Large Language Models
Cloud-Device Collaborative Learning for Multimodal Large Lan...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Guanqun Wang Jiaming Liu Chenxuan Li Yuan Zhang Junpeng Ma Xinyu Wei Kevin Zhang Maurice Chong Renrui Zhang Yijiang Liu Shanghang Zhang National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University Shanghai AI Lab Nanjing University
The burgeoning field of Multimodal Large Language Models (MLLMs) has exhibited remarkable performance in diverse tasks such as captioning, commonsense reasoning, and visual scene understanding. However, the deployment... 详细信息
来源: 评论
SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational Abilities
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Dong Li, Shimin Zhang, Xin Zhan, Jun Wang, Pengyu Zhou, Yaqian Qiu, Xipeng School of Computer Science Fudan University China Shanghai Key Laboratory of Intelligent Information Processing Fudan University China
Multi-modal large language models are regarded as a crucial step towards Artificial General Intelligence (AGI) and have garnered significant interest with the emergence of ChatGPT. However, current speech-language mod... 详细信息
来源: 评论
NuScenes-QA: A Multi-Modal Visual Question Answering Benchmark for Autonomous Driving Scenario
arXiv
收藏 引用
arXiv 2023年
作者: Qian, Tianwen Chen, Jingjing Zhuo, Linhai Jiao, Yang Jiang, Yu-Gang Academy for Engineering and Technology Fudan University China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China
We introduce a novel visual question answering (VQA) task in the context of autonomous driving, aiming to answer natural language questions based on street-view clues. Compared to traditional VQA tasks, VQA in autonom... 详细信息
来源: 评论
Multijugate Dual Learning for Low-Resource Task-Oriented Dialogue System
arXiv
收藏 引用
arXiv 2023年
作者: Li, Shimin Zhang, Xiaotian Zheng, Yanjun Li, Linyang Qiu, Xipeng School of Computer Science Fudan University China Shanghai Key Laboratory of Intelligent Information Processing Fudan University China
Dialogue data in real scenarios tend to be sparsely available, rendering data-starved end-to-end dialogue systems trained inadequately. We discover that data utilization efficiency in low-resource scenarios can be enh... 详细信息
来源: 评论
MFAE: Masked frame-level autoencoder with hybrid-supervision for low-resource music transcription
MFAE: Masked frame-level autoencoder with hybrid-supervision...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yulun Wu Jiahao Zhao Yi Yu Wei Li School of Computer Science and Technology Fudan University Shanghai China Shanghai Key Laboratory of Intelligent Information Processing Fudan University Shanghai China
Automantic Music Transcription (AMT) is an essential topic in music information retrieval (MIR), and it aims to transcribe audio recordings into symbolic representations. Recently, large-scale piano datasets with high...
来源: 评论
On the Universal Adversarial Perturbations for Efficient Data-free Adversarial Detection
arXiv
收藏 引用
arXiv 2023年
作者: Gao, Songyang Dou, Shihan Zhang, Qi Huang, Xuanjing Ma, Jin Shan, Ying School of Computer Science Fudan University Shanghai China Shanghai Key Laboratory of Intelligent Information Processing Shanghai China Tencent PCG China
Detecting adversarial samples that are carefully crafted to fool the model is a critical step to socially-secure applications. However, existing adversarial detection methods require access to sufficient training data... 详细信息
来源: 评论