咨询与建议

限定检索结果

文献类型

  • 922 篇 期刊文献
  • 880 篇 会议
  • 2 册 图书

馆藏范围

  • 1,804 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,244 篇 工学
    • 927 篇 计算机科学与技术...
    • 799 篇 软件工程
    • 293 篇 信息与通信工程
    • 199 篇 生物工程
    • 139 篇 光学工程
    • 135 篇 控制科学与工程
    • 102 篇 生物医学工程(可授...
    • 75 篇 电气工程
    • 72 篇 化学工程与技术
    • 68 篇 机械工程
    • 67 篇 电子科学与技术(可...
    • 33 篇 仪器科学与技术
    • 30 篇 建筑学
    • 29 篇 土木工程
    • 26 篇 安全科学与工程
    • 25 篇 交通运输工程
  • 702 篇 理学
    • 358 篇 数学
    • 218 篇 生物学
    • 191 篇 物理学
    • 97 篇 统计学(可授理学、...
    • 71 篇 化学
    • 33 篇 系统科学
  • 373 篇 管理学
    • 238 篇 图书情报与档案管...
    • 149 篇 管理科学与工程(可...
    • 56 篇 工商管理
  • 80 篇 医学
    • 67 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 31 篇 公共卫生与预防医...
    • 29 篇 药学(可授医学、理...
  • 47 篇 法学
    • 47 篇 社会学
  • 17 篇 经济学
  • 13 篇 农学
  • 11 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 97 篇 semantics
  • 65 篇 feature extracti...
  • 52 篇 training
  • 36 篇 convolution
  • 35 篇 object detection
  • 34 篇 deep learning
  • 34 篇 machine learning
  • 29 篇 deep neural netw...
  • 28 篇 task analysis
  • 28 篇 visualization
  • 27 篇 computational li...
  • 27 篇 computer vision
  • 26 篇 image segmentati...
  • 24 篇 signal processin...
  • 22 篇 contrastive lear...
  • 22 篇 computational mo...
  • 20 篇 predictive model...
  • 20 篇 benchmarking
  • 19 篇 data mining
  • 19 篇 accuracy

机构

  • 237 篇 school of comput...
  • 210 篇 shanghai key lab...
  • 155 篇 shanghai key lab...
  • 149 篇 shanghai key lab...
  • 103 篇 school of comput...
  • 72 篇 shanghai key lab...
  • 47 篇 academy for engi...
  • 45 篇 school of comput...
  • 44 篇 institute of sci...
  • 37 篇 shanghai key lab...
  • 34 篇 institute of mod...
  • 31 篇 shanghai key lab...
  • 31 篇 school of data s...
  • 29 篇 school of inform...
  • 27 篇 shanghai center ...
  • 24 篇 school of comput...
  • 24 篇 fudan university
  • 22 篇 university of ch...
  • 22 篇 shanghai enginee...
  • 21 篇 school of comput...

作者

  • 125 篇 huang xuanjing
  • 114 篇 qiu xipeng
  • 79 篇 xue xiangyang
  • 64 篇 jiang yu-gang
  • 61 篇 zhang qi
  • 55 篇 zhang yuejie
  • 54 篇 zhang wenqiang
  • 54 篇 zhang junping
  • 53 篇 feng rui
  • 48 篇 fu yanwei
  • 43 篇 zhang zhongzhi
  • 42 篇 gui tao
  • 42 篇 li wei
  • 40 篇 zhou shuigeng
  • 38 篇 shuigeng zhou
  • 35 篇 li bin
  • 35 篇 shan hongming
  • 32 篇 tao zhang
  • 32 篇 junping zhang
  • 32 篇 rui feng

语言

  • 1,643 篇 英文
  • 130 篇 其他
  • 35 篇 中文
检索条件"机构=Shanghai Key Lab of Intelligent Information Processing and School of Computer Science"
1804 条 记 录,以下是471-480 订阅
排序:
Research on the seismic signal classification algorithm based on SE-DenseNet  4
Research on the seismic signal classification algorithm base...
收藏 引用
4th International Conference on Machine Learning and computer Application, ICMLCA 2023
作者: Wang, Yuan Huang, Hanming Ding, Weiwei Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Normal University Guilin541004 China Guangxi Key Lab of Multi-Source Information Mining and Security Guangxi Normal University Guilin541004 China School of Computer Science and Engineering Guangxi Normal University Guilin541004 China
Addressing the issue of seismic signal classification and recognition for natural earthquakes and artificial blasting, a deep learning model suitable for seismic signal classification and recognition is proposed. In t... 详细信息
来源: 评论
Harry: A Scalable SIMD-based Multi-literal Pattern Matching Engine for Deep Packet Inspection
Harry: A Scalable SIMD-based Multi-literal Pattern Matching ...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE computer and Communications Societies
作者: Hao Xu Harry Chang Wenjun Zhu Yang Hong Geoff Langdale Kun Qiu Jin Zhao School of Computer Science Fudan University China Shanghai Key Laboratory of Intelligent Information Processing Shanghai China Intel Asia-Pacific Research & Development Ltd. Shanghai China
Deep Packet Inspection (DPI) is a significant network security technique. It examines traffic workloads by searching for specific rules. Since every byte of packets needs to be examined by many literal rules, multi-li...
来源: 评论
AUTOMATIC CHINESE NATIONAL PENTATONIC MODES RECOGNITION USING CONVOLUTIONAL NEURAL NETWORK  23
AUTOMATIC CHINESE NATIONAL PENTATONIC MODES RECOGNITION USIN...
收藏 引用
23rd International Society for Music information Retrieval Conference, ISMIR 2022
作者: Wang, Zhaowen Che, Mingjin Yang, Yue Meng, Wenwu Li, Qinyu Xia, Fan Li, Wei Department of Music AI and Information Technology Central Conservatory of Music China College of Experimental Art Sichuan Conservatory of Music China School of Computer Science and Technology Fudan University China Shanghai Key Laboratory of Intelligent Information Processing Fudan University China
Chinese national pentatonic modes, with five tones of Gong, Shang, Jue, Zhi and Yu as the core, play an essential role in traditional Chinese music culture. After the early twentieth century, with the development of n... 详细信息
来源: 评论
ME-D2N: Multi-Expert Domain Decompositional Network for Cross-Domain Few-Shot Learning
arXiv
收藏 引用
arXiv 2022年
作者: Fu, Yuqian Xie, Yu Fu, Yanwei Chen, Jingjing Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China School of Data Science Fudan University China
Recently, Cross-Domain Few-Shot Learning (CD-FSL) which aims at addressing the Few-Shot Learning (FSL) problem across different domains has attracted rising attention. The core challenge of CD-FSL lies in the domain g... 详细信息
来源: 评论
FedGAC: Graph Federated Learning with Gradients Aggregation Calibration for Non-IID and Long-Tailed Data  22
FedGAC: Graph Federated Learning with Gradients Aggregation ...
收藏 引用
22nd IEEE International Symposium on Parallel and Distributed processing with Applications, ISPA 2024
作者: Li, Jie Wang, Jinyan Deng, Rongbin Yan, Dongqi Li, Qiyu Guangxi Normal University Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guilin541004 China Guangxi Normal University Guangxi Key Lab of Multi-Source Information Mining and Security Guilin541004 China Guangxi Normal University School of Computer Science and Engineering Guilin541004 China
Federated graph learning (FGL) combines the advantages of graph neural networks and federated learning, extracting valuable information from decentralized graph data while preserving data privacy. Existing FGL methods... 详细信息
来源: 评论
Modeling Layout Reading Order as Ordering Relations for Visually-rich Document Understanding
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Chong Tu, Yi Zhao, Yixi Yuan, Chenshu Chen, Huan Zhang, Yue Chai, Mingxu Guo, Ya Zhu, Huijia Zhang, Qi Gui, Tao School of Computer Science Fudan University Shanghai China Shanghai Key Laboratory of Intelligent Information Processing Shanghai China Ant Tiansuan Security Lab Ant Group Hangzhou China School of Statistics and Data Science Nankai University Tianjin China Institute of Modern Languages and Linguistics Fudan University Shanghai China
Modeling and leveraging layout reading order in visually-rich documents (VrDs) is critical in document intelligence as it captures the rich structure semantics within documents. Previous works typically formulated lay... 详细信息
来源: 评论
Wave-SAN: Wavelet based Style Augmentation Network for Cross-Domain Few-Shot Learning
arXiv
收藏 引用
arXiv 2022年
作者: Fu, Yuqian Xie, Yu Fu, Yanwei Chen, Jingjing Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China School of Data Science Fudan University China
Previous few-shot learning (FSL) works mostly are limited to natural images of general concepts and categories. These works assume very high visual similarity between the source and target classes. In contrast, the re... 详细信息
来源: 评论
Hi-EF: Benchmarking Emotion Forecasting in Human-interaction
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Haoran Mai, Xinji Tao, Zeng Wang, Yan Yu, Jiawen Zhou, Ziheng Tong, Xuan Yan, Shaoqi Zhao, Qing Gao, Shuyong Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Engineering Research Center of Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China School of Information Science and Technology Fudan University Shanghai China
Affective Forecasting, a research direction in psychology that predicts individuals' future emotions, is often constrained by numerous external factors like social influence and temporal distance. To address this,... 详细信息
来源: 评论
(Image Present) ForgerySleuth: Empowering Multimodal Large Language Models for Image Manipulation Detection
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Zhihao Jiang, Haoran Chen, Haoran Cao, Yixin Qiu, Xipeng Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China School of Computer Science Fudan University China
(Image Present) Multimodal large language models have unlocked new possibilities for various multimodal tasks. However, their potential in image manipulation detection remains unexplored. When directly applied to the ... 详细信息
来源: 评论
Towards End-to-End Unsupervised Saliency Detection with Self-Supervised Top-Down Context
arXiv
收藏 引用
arXiv 2023年
作者: Song, Yicheng Gao, Shuyong Xing, Haozhe Cheng, Yiting Wang, Yan Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Keenon Robotics Co. Ltd. Shanghai China Academy for Engineering & Technology Fudan University Shanghai China
Unsupervised salient object detection aims to detect salient objects without using supervision signals eliminating the tedious task of manually labeling salient objects. To improve training efficiency, end-to-end meth... 详细信息
来源: 评论