咨询与建议

限定检索结果

文献类型

  • 924 篇 期刊文献
  • 881 篇 会议
  • 2 册 图书

馆藏范围

  • 1,807 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,246 篇 工学
    • 926 篇 计算机科学与技术...
    • 798 篇 软件工程
    • 296 篇 信息与通信工程
    • 199 篇 生物工程
    • 139 篇 光学工程
    • 134 篇 控制科学与工程
    • 102 篇 生物医学工程(可授...
    • 74 篇 电气工程
    • 71 篇 化学工程与技术
    • 68 篇 机械工程
    • 68 篇 电子科学与技术(可...
    • 34 篇 仪器科学与技术
    • 30 篇 建筑学
    • 29 篇 土木工程
    • 26 篇 安全科学与工程
    • 25 篇 交通运输工程
  • 702 篇 理学
    • 360 篇 数学
    • 218 篇 生物学
    • 191 篇 物理学
    • 100 篇 统计学(可授理学、...
    • 71 篇 化学
    • 33 篇 系统科学
  • 375 篇 管理学
    • 240 篇 图书情报与档案管...
    • 149 篇 管理科学与工程(可...
    • 55 篇 工商管理
  • 79 篇 医学
    • 66 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 31 篇 公共卫生与预防医...
    • 29 篇 药学(可授医学、理...
  • 48 篇 法学
    • 48 篇 社会学
  • 17 篇 经济学
  • 13 篇 农学
  • 11 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 98 篇 semantics
  • 66 篇 feature extracti...
  • 51 篇 training
  • 36 篇 convolution
  • 34 篇 object detection
  • 34 篇 deep learning
  • 34 篇 machine learning
  • 29 篇 deep neural netw...
  • 28 篇 task analysis
  • 27 篇 computational li...
  • 27 篇 visualization
  • 27 篇 computer vision
  • 26 篇 image segmentati...
  • 24 篇 signal processin...
  • 23 篇 computational mo...
  • 22 篇 contrastive lear...
  • 21 篇 accuracy
  • 20 篇 predictive model...
  • 20 篇 benchmarking
  • 19 篇 data mining

机构

  • 236 篇 school of comput...
  • 211 篇 shanghai key lab...
  • 156 篇 shanghai key lab...
  • 152 篇 shanghai key lab...
  • 103 篇 school of comput...
  • 71 篇 shanghai key lab...
  • 48 篇 school of comput...
  • 47 篇 academy for engi...
  • 44 篇 institute of sci...
  • 37 篇 shanghai key lab...
  • 34 篇 institute of mod...
  • 31 篇 shanghai key lab...
  • 31 篇 school of data s...
  • 29 篇 school of inform...
  • 27 篇 shanghai center ...
  • 24 篇 school of comput...
  • 24 篇 fudan university
  • 22 篇 university of ch...
  • 22 篇 shanghai enginee...
  • 21 篇 school of comput...

作者

  • 125 篇 huang xuanjing
  • 114 篇 qiu xipeng
  • 80 篇 xue xiangyang
  • 64 篇 jiang yu-gang
  • 61 篇 zhang qi
  • 55 篇 zhang yuejie
  • 54 篇 zhang wenqiang
  • 54 篇 zhang junping
  • 54 篇 feng rui
  • 48 篇 fu yanwei
  • 44 篇 li wei
  • 43 篇 zhang zhongzhi
  • 42 篇 gui tao
  • 40 篇 zhou shuigeng
  • 38 篇 shuigeng zhou
  • 36 篇 li bin
  • 35 篇 shan hongming
  • 32 篇 junping zhang
  • 32 篇 rui feng
  • 31 篇 tao zhang

语言

  • 1,491 篇 英文
  • 285 篇 其他
  • 38 篇 中文
检索条件"机构=Shanghai Key Lab of Intelligent Information Processing and School of Computer Science"
1807 条 记 录,以下是561-570 订阅
排序:
Cloud-Device Collaborative Learning for Multimodal Large Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Guanqun Liu, Jiaming Li, Chenxuan Ma, Junpeng Zhang, Yuan Wei, Xinyu Zhang, Kevin Chong, Maurice Zhang, Ray Liu, Yijiang Zhang, Shanghang National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China Shanghai AI Lab China Nanjing University China
The burgeoning field of Multimodal Large Language Models (MLLMs) has exhibited remarkable performance in diverse tasks such as captioning, commonsense reasoning, and visual scene understanding. However, the deployment... 详细信息
来源: 评论
Rethink Video Retrieval Representation for Video Captioning
SSRN
收藏 引用
SSRN 2024年
作者: Tian, Mingkai Li, Guorong Qi, Yuankai Wang, Shuhui Sheng, Quan Z. Huang, Qingming School of Computer Science and Technology Key Lab of Big Data Mining and Knowledge Management University of Chinese Academy of Sciences China School of Computing Macquarie University Australia Key Laboratory of Intelligent Information Processing Institute of Computer Technology Chinese Academy of Sciences China
Video captioning, a challenging task targeting the automatic generation of accurate and comprehensive descriptions based on video content, has witnessed substantial success recently driven by bridging video representa... 详细信息
来源: 评论
Semi-Supervised Self-Learning Enhanced Music Emotion Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Yifu Zhang, Xulong Zhou, Monan Li, Wei School of Computer Science and Technology Fudan University Shanghai China Ping An Technology Co. Ltd. Shenzhen China Department of Music AI and Information Technology Central Conservatory of Music Beijing China Shanghai Key Laboratory of Intelligent Information Processing Fudan University Shanghai China
Music emotion recognition (MER) aims to identify the emotions conveyed in a given musical piece. However, currently, in the field of MER, the available public datasets have limited sample sizes. Recently, segment-base... 详细信息
来源: 评论
Cross-Point Adversarial Attack Based on Feature Neighborhood Disruption Against Segment Anything Model
Cross-Point Adversarial Attack Based on Feature Neighborhood...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yan Jiang Guisheng Yin Ye Yuan Jingjing Chen Zhipeng Wei College of Computer Science and Technology Harbin Engineering University Harbin China Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai China Shanghai Collaborative Innovation Center of Intelligent Visual Computing Shanghai China
Segment anything model (SAM) has received significant attention owing to its outstanding segmentation performance. However, it may still face security threats from adversarial examples. Since SAM interactively realize... 详细信息
来源: 评论
General Compression Framework for Efficient Transformer Object Tracking
arXiv
收藏 引用
arXiv 2024年
作者: Hong, Lingyi Li, Jinglun Zhou, Xinyu Yan, Shilin Guo, Pinxue Jiang, Kaixun Chen, Zhaoyu Gao, Shuyong Zhang, Wei Lu, Hong Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China
Transformer-based trackers have established a dominant role in the field of visual object tracking. While these trackers exhibit promising performance, their deployment on resource-constrained devices remains challeng... 详细信息
来源: 评论
Prototypical Residual Networks for Anomaly Detection and Localization
Prototypical Residual Networks for Anomaly Detection and Loc...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Hui Zhang Zuxuan Wu Zheng Wang Zhineng Chen Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing School of Computer Science Zhejiang University of Technology
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies...
来源: 评论
HiREN: Towards Higher Supervision Quality for Better Scene Text Image Super-Resolution
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Minyi Xu, Yi Li, Bingjia Wang, Jie Guan, Jihong Zhou, Shuigeng Shanghai Key Lab of Intelligent Information Processing School of Computer Science Jiangwan Campus Fudan University 2005 Songhu Road Shanghai200438 China ByteDance Inc Beijing100098 China Department of Computer Science and Technology Tongji University 4800 Caoan Road Shanghai201804 China
Scene text image super-resolution (STISR) is an important pre-processing technique for text recognition from low-resolution scene images. Nowadays, various methods have been proposed to extract text-specific informati... 详细信息
来源: 评论
From Efficient Multimodal Models to World Models: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Mai, Xinji Tao, Zeng Lin, Junxiong Wang, Haoran Chang, Yang Kang, Yanlan Wang, Yan Zhang, Wenqiang Shanghai Engineering Research Center of AI and Robotics Academy for Engineering and Technology Fudan University Shanghai China Engineering Research Center of AI and Robotics Ministry of Education Academy for Engineering and Technology Fudan University Shanghai China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
Multimodal Large Models (MLMs) are becoming a significant research focus, combining powerful large language models with multimodal learning to perform complex tasks across different data modalities. This review explor... 详细信息
来源: 评论
P3S-Diffusion:A Selective Subject-driven Generation Framework via Point Supervision
arXiv
收藏 引用
arXiv 2024年
作者: Hu, Junjie Gao, Shuyong Hong, Lingyi Wang, Qishan Zhao, Yuzhou Wang, Yan Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China
Recent research in subject-driven generation increasingly emphasizes the importance of selective subject features. Nevertheless, accurately selecting the content in a given reference image still poses challenges, espe... 详细信息
来源: 评论
Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Xin Nie, Ping Guo, Yiwen Wei, Haojie Zhang, Zhanqiu Minervini, Pasquale Ma, Ruotian Gui, Tao Zhang, Qi Huang, Xuanjing School of Computer Science Fudan University Shanghai China LightSpeed Studios Tencent China Institute of Modern Languages and Linguistics Fudan University Shanghai China Key Laboratory of Intelligent Information Processing Fudan University Shanghai China School of Informatics and ELLIS University of Edinburgh United Kingdom
Retrieval-Augmented Generation (RAG) significantly improved the ability of Large Language Models (LLMs) to solve knowledge-intensive tasks. While existing research seeks to enhance RAG performance by retrieving higher... 详细信息
来源: 评论