咨询与建议

限定检索结果

文献类型

  • 156 篇 会议
  • 73 篇 期刊文献

馆藏范围

  • 229 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 工学
    • 122 篇 计算机科学与技术...
    • 89 篇 软件工程
    • 26 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 11 篇 生物工程
    • 8 篇 机械工程
    • 8 篇 动力工程及工程热...
    • 7 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 航空宇航科学与技...
    • 5 篇 电气工程
    • 4 篇 网络空间安全
    • 3 篇 力学(可授工学、理...
    • 3 篇 光学工程
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 环境科学与工程(可...
    • 3 篇 生物医学工程(可授...
  • 71 篇 理学
    • 48 篇 数学
    • 14 篇 系统科学
    • 14 篇 统计学(可授理学、...
    • 12 篇 生物学
    • 11 篇 物理学
    • 3 篇 化学
  • 43 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 18 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 2 篇 法学

主题

  • 10 篇 software enginee...
  • 9 篇 web services
  • 7 篇 laboratories
  • 7 篇 authentication
  • 7 篇 computational mo...
  • 7 篇 semantics
  • 6 篇 xml
  • 6 篇 educational inst...
  • 6 篇 algorithm design...
  • 6 篇 analytical model...
  • 5 篇 protocols
  • 4 篇 reinforcement le...
  • 4 篇 public key crypt...
  • 4 篇 network topology
  • 4 篇 wireless sensor ...
  • 4 篇 calculus
  • 3 篇 helium
  • 3 篇 surveys
  • 3 篇 service oriented...
  • 3 篇 application soft...

机构

  • 67 篇 shanghai key lab...
  • 36 篇 software enginee...
  • 18 篇 shanghai key lab...
  • 15 篇 shanghai key lab...
  • 15 篇 shanghai key lab...
  • 8 篇 shanghai key lab...
  • 6 篇 school of inform...
  • 6 篇 school of comput...
  • 5 篇 university of ch...
  • 4 篇 shanghai key lab...
  • 4 篇 shanghai key lab...
  • 4 篇 state key labora...
  • 3 篇 institute of com...
  • 3 篇 microsoft
  • 3 篇 college of infor...
  • 3 篇 east china norma...
  • 3 篇 science and tech...
  • 3 篇 state key lab of...
  • 3 篇 shanghai key lab...
  • 3 篇 shanghai key lab...

作者

  • 16 篇 huibiao zhu
  • 13 篇 wang ting
  • 12 篇 zhu huibiao
  • 11 篇 zhao hui
  • 10 篇 qin li
  • 10 篇 zhou aoying
  • 9 篇 zhang lei
  • 9 篇 shi yuanming
  • 8 篇 wang xiaoling
  • 7 篇 peng chao
  • 7 篇 hui zhao
  • 6 篇 yongxin zhao
  • 6 篇 zhao yongxin
  • 6 篇 jifeng he
  • 6 篇 jing liu
  • 6 篇 du yugen
  • 5 篇 cai haibin
  • 5 篇 geguang pu
  • 5 篇 shi jianqi
  • 5 篇 li qin

语言

  • 214 篇 英文
  • 12 篇 其他
  • 3 篇 中文
检索条件"机构=Shanghai Key Lab of Trustworthy Computing Software Engineering Institute"
229 条 记 录,以下是51-60 订阅
排序:
Federated Linear Bandit Learning via Over-the-air Computation
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Jiali Jiang, Yuning Liu, Xin Wang, Ting Shi, Yuanming MoE Engineering Research Center of Software/Hardware Co-design Technology and Application Shanghai Key Lab. of Trustworthy Computing East China Normal University China Automatic Control Laboratory EPFL Switzerland ShanghaiTech University China
In this paper, we investigate federated contextual linear bandit learning within a wireless system that comprises a server and multiple devices. Each device interacts with the environment, selects an action based on t... 详细信息
来源: 评论
Green Federated Learning over Cloud-RAN with Limited Fronthaul and Quantized Neural Networks
Green Federated Learning over Cloud-RAN with Limited Frontha...
收藏 引用
Communications and Networking (MeditCom), IEEE International Mediterranean Conference on
作者: Jiali Wang Yijie Mao Ting Wang Yuanming Shi MoE Engineering Research Center of Software/Hardware Co-Design Technology and Application Shanghai Key Lab. of Trustworthy Computing East China Normal University China School of Information Science and Technology (SIST) ShanghaiTech University China
In this paper, we investigate a green federated learning (FL) framework over cloud radio access network (Cloud-RAN) system that comprises a server, multiple devices and remote radio heads (RRHs). Each device utilizes ...
来源: 评论
A Decentralized Vehicle-to-Vehicle Energy Trading System Based on Efficient Sharding Services
A Decentralized Vehicle-to-Vehicle Energy Trading System Bas...
收藏 引用
IEEE International Conference on Big Data and Cloud computing (BdCloud)
作者: Kun Meng Lijun Sun Xiao Chen Haiqin Wu Shuaiyong Li College of Information Science and Technology Qingdao University of Science and Technology Shandong China School of Computing and Mathematical Sciences University of Leicester Leicester UK Software Engineering Institute (Shanghai Key Laboratory of Trustworthy Computing) East China Normal University Shanghai China Key Laboratory of Industrial Internet of Things and Networked Control Ministry of Education Chongqing China
Vehicle-to-vehicle (V2V) energy trading stands as a significant technology, allowing electric vehicles (EVs) to share energy. This balances energy demand and supply, reducing pressure on the power grid. However, two s...
来源: 评论
Using surrounding text of formula towards more accurate mathematical information retrieval  33
Using surrounding text of formula towards more accurate math...
收藏 引用
33rd International Conference on software engineering and Knowledge engineering, SEKE 2021
作者: Chen, Cheng Dai, Yifan Shen, Yuqi Cai, Jinfang Chen, Liangyu Engineering Research Center of Software Hardware Co-Design Technology and Application East China Normal University Shanghai China Shanghai Key Laboratory of Trustworthy Computing East China Normal University Shanghai China Institute of Vocational and Adult Education East China Normal University Shanghai China
Formula retrieval is an important research topic in Mathematical Information Retrieval (MIR). Most studies have focused on comparing formulae to determine the similarity between mathematical documents. However, two si... 详细信息
来源: 评论
FREPA: An Automated and Formal Approach to Requirement Modeling and Analysis in Aircraft Control Domain
arXiv
收藏 引用
arXiv 2023年
作者: Feng, Jincao Miao, Weikai Zheng, Hanyue Huang, Yihao Li, Jianwen Wang, Zheng Su, Ting Gu, Bin Pu, Geguang Yang, Mengfei He, Jifeng East China Normal University China Shanghai Key Lab of Trustworthy Computing China Beijing Institute of Control Engineering China Shanghai Trusted Industrial Control Platform Co. Ltd China China Academy of Space Technology China
Formal methods are promising for modeling and analyzing system requirements. However, applying formal methods to large-scale industrial projects is a remaining challenge. The industrial engineers are suffering from th... 详细信息
来源: 评论
Over-the-Air Federated Learning via Second-Order Optimization
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Peng Jiang, Yuning Wang, Ting Zhou, Yong Shi, Yuanming Jones, Colin N. The Shanghai Key Lab. of Trustworthy Computing Software Engineering Institute East China Normal University Shanghai200062 China The Automatic Control Laboratory EPFL Lausanne1015 Switzerland The School of Information Science and Technology ShanghaiTech University Shanghai201210 China
Federated learning (FL) is a promising learning paradigm that can tackle the increasingly prominent isolated data islands problem while keeping users' data locally with privacy and security guarantees. However, FL... 详细信息
来源: 评论
Machine Learning Empowered Intelligent Data Center Networking: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Li, Bo Wang, Ting Yang, Peng Chen, Mingsong Yu, Shui Hamdi, Mounir The Software Engineering Institute Shanghai Key Laboratory of Trustworthy Computing East China Normal University Shanghai China The School of Computer Science University of Technology Sydney Australia The College of Science and Engineering Hamad Bin Khalifa University Qatar
To support the needs of ever-growing cloud-based services, the number of servers and network devices in data centers is increasing exponentially, which in turn results in high complexities and difficulties in network ... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj Computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
ADAPTIVE INCENTIVE FOR CROSS-SILO FEDERATED LEARNING: A MULTI-AGENT REINFORCEMENT LEARNING APPROACH
arXiv
收藏 引用
arXiv 2023年
作者: Yuan, Shijing Liu, Hongze Lv, Hongtao Feng, Zhanbo Li, Jie Chen, Hongyang Wu, Chentao Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China School of Software Shandong University Jinan China Research Center for Graph Computing Zhejiang Lab China
Cross-silo federated learning (FL) is a typical FL that enables organizations (e.g., financial or medical entities) to train global models on isolated data. Reasonable incentive is key to encouraging organizations to ... 详细信息
来源: 评论
FastClothGNN: Optimizing message passing in Graph Neural Networks for accelerating real-time cloth simulation
收藏 引用
Graphical Models 2025年 139卷
作者: Yang Zhang Kailuo Yu Xinyu Zhang Software Engineering Institute East China Normal University Shanghai China Shanghai Key Laboratory of Trustworthy Computing Shanghai China Engineering Research Center for Software/Hardware Co-design Technology and Application (MoE) Shanghai China
We present an efficient message aggregation algorithm FastClothGNN for Graph Neural Networks (GNNs) specifically designed for real-time cloth simulation in virtual try-on systems. Our approach reduces computational re... 详细信息
来源: 评论