咨询与建议

限定检索结果

文献类型

  • 92 篇 期刊文献
  • 50 篇 会议

馆藏范围

  • 142 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 52 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 34 篇 生物医学工程(可授...
    • 32 篇 生物工程
    • 20 篇 光学工程
    • 18 篇 仪器科学与技术
    • 17 篇 信息与通信工程
    • 15 篇 机械工程
    • 9 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 控制科学与工程
    • 7 篇 化学工程与技术
    • 3 篇 土木工程
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 建筑学
  • 58 篇 理学
    • 32 篇 生物学
    • 25 篇 数学
    • 16 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 化学
    • 3 篇 系统科学
  • 37 篇 医学
    • 32 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 15 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 5 篇 教育学
    • 5 篇 教育学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 7 篇 ultrasonic imagi...
  • 7 篇 deep learning
  • 6 篇 semantic segment...
  • 6 篇 magnetic resonan...
  • 4 篇 image fusion
  • 4 篇 imaging
  • 4 篇 three-dimensiona...
  • 4 篇 image segmentati...
  • 4 篇 electrocardiogra...
  • 3 篇 phantoms
  • 3 篇 semantics
  • 3 篇 feature extracti...
  • 3 篇 image classifica...
  • 3 篇 training
  • 3 篇 image resolution
  • 2 篇 endoscopy
  • 2 篇 noise reduction
  • 2 篇 ultrasonic backs...
  • 2 篇 distillation
  • 2 篇 deep neural netw...

机构

  • 30 篇 shanghai key lab...
  • 26 篇 digital medical ...
  • 24 篇 digital medical ...
  • 24 篇 key laboratory o...
  • 21 篇 department of el...
  • 20 篇 shanghai key lab...
  • 10 篇 academy for engi...
  • 8 篇 shanghai key lab...
  • 7 篇 the key laborato...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 4 篇 key laboratory o...
  • 3 篇 department of el...
  • 3 篇 department of ne...
  • 3 篇 the department o...
  • 3 篇 shanghai key lab...
  • 3 篇 the digital medi...
  • 2 篇 key laboratory o...

作者

  • 34 篇 song zhijian
  • 33 篇 wang manning
  • 22 篇 qu linhao
  • 18 篇 liu shaolei
  • 15 篇 fu kexue
  • 15 篇 yuanyuan wang
  • 10 篇 manning wang
  • 10 篇 wang yuanyuan
  • 10 篇 luo xiaoyuan
  • 9 篇 wang shuo
  • 9 篇 yang zhiwei
  • 8 篇 yi guo
  • 8 篇 yang cuiwei
  • 8 篇 jinhua yu
  • 7 篇 li shiman
  • 7 篇 meng yucong
  • 6 篇 kexue fu
  • 6 篇 shi yonghong
  • 6 篇 chen xinrong
  • 6 篇 zhijian song

语言

  • 127 篇 英文
  • 8 篇 其他
  • 7 篇 中文
检索条件"机构=Shanghai Key Laboratory for Medical Imaging Computing and Computer Assisted Intervention"
142 条 记 录,以下是11-20 订阅
排序:
Typicality-and instance-dependent label noise-combating:a novel framework for simulating and combating real-world noisy labels for endoscopic polyp classification
收藏 引用
Visual computing for Industry,Biomedicine,and Art 2024年 第1期7卷 300-315页
作者: Yun Gao Junhu Fu Yuanyuan Wang Yi Guo School of Information Science and Technology Fudan UniversityShanghai 200433China Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai Shanghai 200433China
Learning with noisy labels aims to train neural networks with noisy *** models handle instance-inde-pendent label noise(IIN)well;however,they fall short with real-world *** medical image classification,atypical sample... 详细信息
来源: 评论
Decoupled deep hough voting for point cloud registration
收藏 引用
Frontiers of computer Science 2024年 第2期18卷 147-155页
作者: Mingzhi YUAN Kexue FU Zhihao LI Manning WANG Digital Medical Research Center School of Basic Medical SciencesFudan UniversityShanghai 200032China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai 200032China
Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud ***,a series of studies have attempted to combine traditional robust model fitting with deep *** them,DHVR proposed ... 详细信息
来源: 评论
VesselMamba: 3D vessel segmentation in CTA images using Mamba with enhanced Spatial-Channel Attention
收藏 引用
Biomedical Signal Processing and Control 2025年 110卷
作者: Ziyue Xie Xiaoquan Huang Shiyao Chen Yonghong Shi Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai 200032 China Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention Shanghai 200032 China Department of Gastroenterology and Hepatology Zhongshan Hospital Fudan University Shanghai 200032 China
3D vessel segmentation in Computed Tomography Angiography (CTA) is crucial yet challenging due to the complex, multi-scale, and elongated branching structure of human vasculature. Accurate modeling requires capturing ...
来源: 评论
An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates
收藏 引用
Engineering 2015年 第3期1卷 336-343页
作者: Chengcheng Liu Rong Zhang Ying Li Feng Xu Dean Ta Weiqi Wang Department of Electronic Engineering Fudan University Department of Neonatology Children’s Hospital of Fudan University Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai
Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD) instrument and an in vivo application for neonatal bone eval... 详细信息
来源: 评论
An efficient dual-branch framework via implicit self-texture enhancement for arbitrary-scale histopathology image super-resolution
收藏 引用
Scientific Reports 2025年 第1期15卷 1-18页
作者: Minghong Duan Linhao Qu Manning Wang Chenxi Zhang Zhijian Song Zhiwei Yang Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai 200032 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai 200032 China Academy for Engineering and Technology Fudan University Shanghai 200433 China
High-quality whole-slide scanning is expensive, complex, and time-consuming, thus limiting the acquisition and utilization of high-resolution histopathology images in daily clinical work. Deep learning-based single-im...
来源: 评论
A learnable self-supervised task for unsupervised domain adaptation on point cloud classification and segmentation
收藏 引用
Frontiers of computer Science 2023年 第6期17卷 147-149页
作者: Shaolei LIU Xiaoyuan LUO Kexue FU Manning WANG Zhijian SONG Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai 200032China Digital Medical Research Center School of Basic Medical ScienceFudan UniversityShanghai 200032China
1 Introduction Deep neural networks have exhibited excellent performance in supervised tasks on point clouds,such as classification,segmentation[1]and registration[2].In supervised learning schemes,manual labeling of ... 详细信息
来源: 评论
SS-Pro:a simplified siamese contrastive learning approach for protein surface representation
收藏 引用
Frontiers of computer Science 2024年 第5期18卷 243-245页
作者: Ao SHEN Mingzhi YUAN Yingfan MA Manning WANG Digital Medical Research Center School of Basic Medical ScienceFudan UniversityShanghai 200032China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai 200032China
Protein surface serves as an important representation of protein structure,revealing how protein interacts with other biomolecules to perform its *** forms the basis for pharmaceutical and fundamental biological resea... 详细信息
来源: 评论
STCA-Net: Multi-channel ECG Space-Time-Channel Attention Model for Noninvasive Prediction of Catheter Ablation in Atrial Fibrillation  3
STCA-Net: Multi-channel ECG Space-Time-Channel Attention Mod...
收藏 引用
3rd International Conference on Pattern Recognition and Machine Learning, PRML 2022
作者: Zhong, Gaoyan Liu, Sen Wang, Yueyi Yang, Cuiwei Fudan University Center for Biomedical Engineering Shanghai China The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai Shanghai China
Atrial Fibrillation (AF) remains a high recurrence rate after Catheter Ablation (CA). It is of certain clinical significance to predict the recurrence of AF before CA using preoperative electrocardiogram (ECG) signals... 详细信息
来源: 评论
Surface-based automatic coarse registration of head scans
Surface-based automatic coarse registration of head scans
收藏 引用
作者: Li, Fang Song, Zhijian Digital Medical Research Center Fudan University Shanghai200032 China Key Laboratory of Medical Imaging Computing Computer Assisted Intervention of Shanghai Shanghai200032 China
Surface registration is widely used in image-guided neurosurgery to achieve spatial registration between the patient space and the image space. Coarse registration, followed by fine registration, is an important premi... 详细信息
来源: 评论
Evaluation of uncertainty estimation methods in medical image segmentation: Exploring the usage of uncertainty in clinical deployment
收藏 引用
computerized medical imaging and Graphics 2025年 124卷
作者: Shiman Li Mingzhi Yuan Xiaokun Dai Chenxi Zhang Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai 200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai 200032 China Digital Medical Research Center Academy for Engineering and Technology Fudan University Shanghai 200032 China
Uncertainty estimation methods are essential for the application of artificial intelligence (AI) models in medical image segmentation, particularly in addressing reliability and feasibility challenges in clinical depl...
来源: 评论