咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 49 篇 会议

馆藏范围

  • 138 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 88 篇 工学
    • 52 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 33 篇 生物医学工程(可授...
    • 31 篇 生物工程
    • 19 篇 光学工程
    • 18 篇 仪器科学与技术
    • 17 篇 信息与通信工程
    • 14 篇 机械工程
    • 8 篇 电气工程
    • 8 篇 控制科学与工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 化学工程与技术
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 土木工程
  • 56 篇 理学
    • 30 篇 生物学
    • 24 篇 数学
    • 15 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 化学
    • 3 篇 系统科学
  • 36 篇 医学
    • 32 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
    • 2 篇 特种医学
  • 15 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 5 篇 教育学
    • 5 篇 教育学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 7 篇 ultrasonic imagi...
  • 7 篇 deep learning
  • 6 篇 semantic segment...
  • 6 篇 magnetic resonan...
  • 4 篇 image fusion
  • 4 篇 imaging
  • 4 篇 three-dimensiona...
  • 4 篇 image segmentati...
  • 4 篇 electrocardiogra...
  • 3 篇 phantoms
  • 3 篇 semantics
  • 3 篇 feature extracti...
  • 3 篇 image classifica...
  • 3 篇 training
  • 3 篇 image resolution
  • 2 篇 endoscopy
  • 2 篇 noise reduction
  • 2 篇 ultrasonic backs...
  • 2 篇 distillation
  • 2 篇 deep neural netw...

机构

  • 30 篇 shanghai key lab...
  • 26 篇 digital medical ...
  • 24 篇 key laboratory o...
  • 23 篇 digital medical ...
  • 20 篇 department of el...
  • 20 篇 shanghai key lab...
  • 10 篇 academy for engi...
  • 8 篇 shanghai key lab...
  • 7 篇 the key laborato...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 4 篇 key laboratory o...
  • 3 篇 department of el...
  • 3 篇 department of ne...
  • 3 篇 the department o...
  • 3 篇 shanghai key lab...
  • 3 篇 the digital medi...
  • 2 篇 key laboratory o...

作者

  • 34 篇 song zhijian
  • 33 篇 wang manning
  • 22 篇 qu linhao
  • 18 篇 liu shaolei
  • 15 篇 fu kexue
  • 15 篇 yuanyuan wang
  • 10 篇 manning wang
  • 10 篇 wang yuanyuan
  • 10 篇 luo xiaoyuan
  • 9 篇 yang zhiwei
  • 8 篇 wang shuo
  • 8 篇 yi guo
  • 8 篇 yang cuiwei
  • 8 篇 jinhua yu
  • 7 篇 li shiman
  • 7 篇 meng yucong
  • 6 篇 kexue fu
  • 6 篇 shi yonghong
  • 6 篇 chen xinrong
  • 6 篇 zhijian song

语言

  • 125 篇 英文
  • 7 篇 其他
  • 6 篇 中文
检索条件"机构=Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention"
138 条 记 录,以下是71-80 订阅
排序:
TransMEF: A transformer-based multi-exposure image fusion framework using self-supervised multi-task learning
arXiv
收藏 引用
arXiv 2021年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
In this paper, we propose TransMEF, a transformer-based multi-exposure image fusion framework that uses self-supervised multi-task learning. The framework is based on an encoder-decoder network, which can be trained o... 详细信息
来源: 评论
Reducing Domain Gap in Frequency and Spatial domain for Cross-modality Domain Adaptation on medical image Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Shaolei Yin, Siqi Qu, Linhao Wang, Manning Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
Unsupervised domain adaptation (UDA) aims to learn a model trained on source domain and performs well on unlabeled target domain. In medical image segmentation field, most existing UDA methods depend on adversarial le... 详细信息
来源: 评论
Boosting 3D Point Cloud Registration by Transferring Multi-modality Knowledge
Boosting 3D Point Cloud Registration by Transferring Multi-m...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Mingzhi Yuan Xiaoshui Huang Kexue Fu Zhihao Li Manning Wang Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai China Shanghai artificial intelligence Lab. China
The recent multi-modality models have achieved great performance in many vision tasks because the extracted features contain the multi-modality knowledge. However, most of the current registration descriptors have onl...
来源: 评论
FANCL: Feature-Guided Attention Network with Curriculum Learning for Brain Metastases Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Zijiang Liu, Xiaoyu Qu, Linhao Shi, Yonghong Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Accurate segmentation of brain metastases (BMs) in MR image is crucial for the diagnosis and followup of patients. Methods based on deep convolutional neural networks (CNNs) have achieved high segmentation performance... 详细信息
来源: 评论
Multi-organ segmentation: a progressive exploration of learning paradigms under scarce annotation
arXiv
收藏 引用
arXiv 2023年
作者: Li, Shiman Wang, Haoran Meng, Yucong Zhang, Chenxi Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in ... 详细信息
来源: 评论
An Attention-Based Signed Distance Field Estimation Method for Hand-Object Reconstruction
An Attention-Based Signed Distance Field Estimation Method f...
收藏 引用
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), IEEE Conference on
作者: Xinkang Zhang Xinhan Di Xiaokun Dai Xinrong Chen Academy for engineering & technology Fudan University shanghai China Bloo company shanghai China Academy for engineering & technology Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Fudan University shanghai China
Joint reconstruction of hands and objects from monocular RGB images is a challenging task. In this work, we present a novel hybrid model for joint reconstruction of hands and objects. The model proposed consists of th... 详细信息
来源: 评论
Deep Mutual Learning among Partially Labeled Datasets for Multi-Organ Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xiaoyu Qu, Linhao Xie, Ziyue Shi, Yonghong Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
The task of labeling multiple organs for segmentation is a complex and time-consuming process, resulting in a scarcity of comprehensively labeled multi-organ datasets while the emergence of numerous partially labeled ... 详细信息
来源: 评论
A comprehensive survey on deep active learning in medical image analysis
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Haoran Jin, Qiuye Li, Shiman Liu, Siyu Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai200032 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China Thuwal23955 Saudi Arabia
Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severel... 详细信息
来源: 评论
Boosting 3D Point Cloud Registration by Transferring Multi-modality Knowledge
arXiv
收藏 引用
arXiv 2023年
作者: Yuan, Mingzhi Huang, Xiaoshui Fu, Kexue Li, Zhihao Wang, Manning The Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China The Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China The Shanghai artificial intelligence Lab China
The recent multi-modality models have achieved great performance in many vision tasks because the extracted features contain the multi-modality knowledge. However, most of the current registration descriptors have onl... 详细信息
来源: 评论
CHEST-DIFFUSION: A LIGHT-WEIGHT TEXT-TO-image MODEL FOR REPORT-TO-CXR GENERATION
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Peng Gao, Xue Huang, Lihong Jiao, Jing Li, Xiaokang Wang, Yuanyuan Guo, Yi Department of Electronic Engineering Fudan University Shanghai200433 China Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai Shanghai200032 China
Text-to-image generation has important implications for generation of diverse and controllable images. Several attempts have been made to adapt Stable Diffusion (SD) to the medical domain. However, the large distribut... 详细信息
来源: 评论