咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 103 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 50 篇 计算机科学与技术...
    • 48 篇 软件工程
    • 23 篇 生物医学工程(可授...
    • 23 篇 生物工程
    • 18 篇 光学工程
    • 15 篇 信息与通信工程
    • 13 篇 仪器科学与技术
    • 12 篇 机械工程
    • 7 篇 电气工程
    • 7 篇 控制科学与工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 测绘科学与技术
  • 44 篇 理学
    • 24 篇 生物学
    • 21 篇 数学
    • 12 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 6 篇 化学
    • 2 篇 系统科学
  • 20 篇 医学
    • 18 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 15 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 4 篇 教育学
    • 4 篇 教育学

主题

  • 7 篇 deep learning
  • 6 篇 ultrasonic imagi...
  • 6 篇 semantic segment...
  • 6 篇 magnetic resonan...
  • 4 篇 image fusion
  • 4 篇 three-dimensiona...
  • 4 篇 image segmentati...
  • 3 篇 imaging
  • 3 篇 semantics
  • 3 篇 image classifica...
  • 3 篇 image resolution
  • 2 篇 endoscopy
  • 2 篇 noise reduction
  • 2 篇 distillation
  • 2 篇 deep neural netw...
  • 2 篇 large dataset
  • 2 篇 semi-supervised ...
  • 2 篇 meteorology
  • 2 篇 iterative method...
  • 2 篇 hospitals

机构

  • 30 篇 shanghai key lab...
  • 26 篇 digital medical ...
  • 20 篇 shanghai key lab...
  • 20 篇 digital medical ...
  • 11 篇 department of el...
  • 11 篇 key laboratory o...
  • 10 篇 academy for engi...
  • 6 篇 the key laborato...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 4 篇 shanghai key lab...
  • 3 篇 shanghai key lab...
  • 3 篇 key laboratory o...
  • 3 篇 the digital medi...
  • 2 篇 shandong compute...
  • 2 篇 department of el...
  • 2 篇 department of ne...
  • 2 篇 deepearthgo

作者

  • 32 篇 wang manning
  • 32 篇 song zhijian
  • 21 篇 qu linhao
  • 18 篇 liu shaolei
  • 15 篇 fu kexue
  • 12 篇 yuanyuan wang
  • 10 篇 manning wang
  • 10 篇 luo xiaoyuan
  • 9 篇 yang zhiwei
  • 8 篇 wang shuo
  • 7 篇 wang yuanyuan
  • 7 篇 yi guo
  • 7 篇 li shiman
  • 7 篇 meng yucong
  • 7 篇 jinhua yu
  • 6 篇 kexue fu
  • 6 篇 chen xinrong
  • 6 篇 zhijian song
  • 5 篇 mingzhi yuan
  • 5 篇 yuan mingzhi

语言

  • 94 篇 英文
  • 7 篇 其他
  • 2 篇 中文
检索条件"机构=Shanghai Key Laboratory of Medical Image Computing and Computer Assited Intervention"
103 条 记 录,以下是61-70 订阅
排序:
TransMEF: A transformer-based multi-exposure image fusion framework using self-supervised multi-task learning
arXiv
收藏 引用
arXiv 2021年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
In this paper, we propose TransMEF, a transformer-based multi-exposure image fusion framework that uses self-supervised multi-task learning. The framework is based on an encoder-decoder network, which can be trained o... 详细信息
来源: 评论
The Rise of AI Language Pathologists: Exploring Two-level Prompt Learning for Few-shot Weakly-supervised Whole Slide image Classification
arXiv
收藏 引用
arXiv 2023年
作者: Qu, Linhao Luo, Xiaoyuan Fu, Kexue Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
This paper introduces the novel concept of few-shot weakly supervised learning for pathology Whole Slide image (WSI) classification, denoted as FSWC. A solution is proposed based on prompt learning and the utilization... 详细信息
来源: 评论
An Attention-Based Signed Distance Field Estimation Method for Hand-Object Reconstruction
An Attention-Based Signed Distance Field Estimation Method f...
收藏 引用
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), IEEE Conference on
作者: Xinkang Zhang Xinhan Di Xiaokun Dai Xinrong Chen Academy for engineering & technology Fudan University shanghai China Bloo company shanghai China Academy for engineering & technology Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Fudan University shanghai China
Joint reconstruction of hands and objects from monocular RGB images is a challenging task. In this work, we present a novel hybrid model for joint reconstruction of hands and objects. The model proposed consists of th... 详细信息
来源: 评论
A comprehensive survey on deep active learning in medical image analysis
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Haoran Jin, Qiuye Li, Shiman Liu, Siyu Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai200032 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China Thuwal23955 Saudi Arabia
Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severel... 详细信息
来源: 评论
Bi-directional Weakly Supervised Knowledge Distillation for Whole Slide image Classification
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Luo, Xiaoyuan Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
computer-aided pathology diagnosis based on the classification of Whole Slide image (WSI) plays an important role in clinical practice, and it is often formulated as a weakly-supervised Multiple Instance Learning (MIL... 详细信息
来源: 评论
Deep Mutual Learning among Partially Labeled Datasets for Multi-Organ Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xiaoyu Qu, Linhao Xie, Ziyue Shi, Yonghong Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
The task of labeling multiple organs for segmentation is a complex and time-consuming process, resulting in a scarcity of comprehensively labeled multi-organ datasets while the emergence of numerous partially labeled ... 详细信息
来源: 评论
Multi-organ segmentation: a progressive exploration of learning paradigms under scarce annotation
arXiv
收藏 引用
arXiv 2023年
作者: Li, Shiman Wang, Haoran Meng, Yucong Zhang, Chenxi Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in ... 详细信息
来源: 评论
FANCL: Feature-Guided Attention Network with Curriculum Learning for Brain Metastases Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Zijiang Liu, Xiaoyu Qu, Linhao Shi, Yonghong Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Accurate segmentation of brain metastases (BMs) in MR image is crucial for the diagnosis and followup of patients. Methods based on deep convolutional neural networks (CNNs) have achieved high segmentation performance... 详细信息
来源: 评论
PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised RGB-D Point Cloud Registration
PointMBF: A Multi-scale Bidirectional Fusion Network for Uns...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Mingzhi Yuan Kexue Fu Zhihao Li Yucong Meng Manning Wang Digital Medical Research Center School of Basic Medical Sciences Fudan University China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention China Shandong Computer Science Center (National Supercomputer Center in Jinan)
Point cloud registration is a task to estimate the rigid transformation between two unaligned scans, which plays an important role in many computer vision applications. Previous learning-based works commonly focus on ...
来源: 评论
CHEST-DIFFUSION: A LIGHT-WEIGHT TEXT-TO-image MODEL FOR REPORT-TO-CXR GENERATION
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Peng Gao, Xue Huang, Lihong Jiao, Jing Li, Xiaokang Wang, Yuanyuan Guo, Yi Department of Electronic Engineering Fudan University Shanghai200433 China Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai Shanghai200032 China
Text-to-image generation has important implications for generation of diverse and controllable images. Several attempts have been made to adapt Stable Diffusion (SD) to the medical domain. However, the large distribut... 详细信息
来源: 评论