咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 103 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 50 篇 计算机科学与技术...
    • 48 篇 软件工程
    • 23 篇 生物医学工程(可授...
    • 23 篇 生物工程
    • 18 篇 光学工程
    • 15 篇 信息与通信工程
    • 13 篇 仪器科学与技术
    • 12 篇 机械工程
    • 7 篇 电气工程
    • 7 篇 控制科学与工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 测绘科学与技术
  • 44 篇 理学
    • 24 篇 生物学
    • 21 篇 数学
    • 12 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 6 篇 化学
    • 2 篇 系统科学
  • 20 篇 医学
    • 18 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 15 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 4 篇 教育学
    • 4 篇 教育学

主题

  • 7 篇 deep learning
  • 6 篇 ultrasonic imagi...
  • 6 篇 semantic segment...
  • 6 篇 magnetic resonan...
  • 4 篇 image fusion
  • 4 篇 three-dimensiona...
  • 4 篇 image segmentati...
  • 3 篇 imaging
  • 3 篇 semantics
  • 3 篇 image classifica...
  • 3 篇 image resolution
  • 2 篇 endoscopy
  • 2 篇 noise reduction
  • 2 篇 distillation
  • 2 篇 deep neural netw...
  • 2 篇 large dataset
  • 2 篇 semi-supervised ...
  • 2 篇 meteorology
  • 2 篇 iterative method...
  • 2 篇 hospitals

机构

  • 30 篇 shanghai key lab...
  • 26 篇 digital medical ...
  • 20 篇 shanghai key lab...
  • 20 篇 digital medical ...
  • 11 篇 department of el...
  • 11 篇 key laboratory o...
  • 10 篇 academy for engi...
  • 6 篇 the key laborato...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 4 篇 shanghai key lab...
  • 3 篇 shanghai key lab...
  • 3 篇 key laboratory o...
  • 3 篇 the digital medi...
  • 2 篇 shandong compute...
  • 2 篇 department of el...
  • 2 篇 department of ne...
  • 2 篇 deepearthgo

作者

  • 32 篇 wang manning
  • 32 篇 song zhijian
  • 21 篇 qu linhao
  • 18 篇 liu shaolei
  • 15 篇 fu kexue
  • 12 篇 yuanyuan wang
  • 10 篇 manning wang
  • 10 篇 luo xiaoyuan
  • 9 篇 yang zhiwei
  • 8 篇 wang shuo
  • 7 篇 wang yuanyuan
  • 7 篇 yi guo
  • 7 篇 li shiman
  • 7 篇 meng yucong
  • 7 篇 jinhua yu
  • 6 篇 kexue fu
  • 6 篇 chen xinrong
  • 6 篇 zhijian song
  • 5 篇 mingzhi yuan
  • 5 篇 yuan mingzhi

语言

  • 94 篇 英文
  • 7 篇 其他
  • 2 篇 中文
检索条件"机构=Shanghai Key Laboratory of Medical Image Computing and Computer Assited Intervention"
103 条 记 录,以下是81-90 订阅
排序:
Segmentation of arteriovenous malformations nidus and vessel in digital subtraction angiography images based on an iterative thresholding method
Segmentation of arteriovenous malformations nidus and vessel...
收藏 引用
International Conference on Biomedical Engineering and Informatics (BMEI)
作者: Yuxi Lian Yuanyuan Wang Jinhua Yu Yi Guo Liang Chen Department of Electronic Engineering Fudan University Shanghai China Key laboratory of Medical Imaging Computing and-Computer Assisted Intervention of Shanghai China Department of Neurosurgery Fudan University Shanghai China
Digital subtraction angiography (DSA) plays an important role in the diagnosis and therapy of vascular diseases. Segmentation of nidus and vessel in DSA images is an essential step in the diagnosis of arteriovenous ma... 详细信息
来源: 评论
Organ at risk segmentation in head and neck CT images by using a two-stage segmentation framework based on 3D U-Net
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Yueyue Zhao, Liang Song, Zhijian Wang, Manning School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention Digital Medical Research Center Fudan University Shanghai200032 China
Accurate segmentation of organ at risk (OAR) play a critical role in the treatment planning of image guided radiation treatment of head and neck cancer. This segmentation task is challenging for both human and automat... 详细信息
来源: 评论
OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology image Classification
arXiv
收藏 引用
arXiv 2023年
作者: Qu, Linhao Ma, Yingfan Yang, Zhiwei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China Academy for Engineering & Technology Fudan University Shanghai200433 China
Active learning (AL) is an effective approach to select the most informative samples to label so as to reduce the annotation cost. Existing AL methods typically work under the closed-set assumption, i.e., all classes ... 详细信息
来源: 评论
Tackling Ambiguity from Perspective of Uncertainty Inference and Affinity Diversification for Weakly Supervised Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Zhiwei Meng, Yucong Fu, Kexue Wang, Shuo Song, Zhijian Academy for Engineering & Technology Fudan University Shanghai200433 China Digital Medical Research Center School of Basic Medical Science Fudan University China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China Shandong Computer Science Center China
Weakly supervised semantic segmentation (WSSS) with image-level labels intends to achieve dense tasks without laborious annotations. However, due to the ambiguous contexts and fuzzy regions, the performance of WSSS, e... 详细信息
来源: 评论
Separate and Conquer: Decoupling Co-occurrence via Decomposition and Representation for Weakly Supervised Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Zhiwei Fu, Kexue Duan, Minghong Qu, Linhao Wang, Shuo Song, Zhijian Academy for Engineering and Technology Fudan University China Digital Medical Research Center School of Basic Medical Sciences Fudan University China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention China Shandong Computer Science Center National Supercomputer Center in Jinan China
Attributed to the frequent coupling of co-occurring objects and the limited supervision from image-level labels, the challenging co-occurrence problem is widely present and leads to false activation of objects in weak... 详细信息
来源: 评论
Rethinking Multiple Instance Learning for Whole Slide image Classification: A Good Instance Classifier is All You Need
arXiv
收藏 引用
arXiv 2023年
作者: Qu, Linhao Ma, Yingfan Luo, Xiaoyuan Guo, Qinhao Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China Department of Gynecologic Oncology Fudan University Shanghai Cancer Center 270 Dong-An Road Shanghai200032 China
Weakly supervised whole slide image classification is usually formulated as a multiple instance learning (MIL) problem, where each slide is treated as a bag, and the patches cut out of it are treated as instances. Exi... 详细信息
来源: 评论
MoRe: Class Patch Attention Needs Regularization for Weakly Supervised Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Zhiwei Meng, Yucong Fu, Kexue Wang, Shuo Song, Zhijian Academy for Engineering and Technology Fudan University Shanghai200433 China Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai200032 China Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention Shanghai200032 China China
Weakly Supervised Semantic Segmentation (WSSS) with image-level labels typically uses Class Activation Maps (CAM) to achieve dense predictions. Recently, Vision Transformer (ViT) has provided an alternative to generat... 详细信息
来源: 评论
key-Point Based Automated Diagnosis for Alveolar Dehiscence in Mandibular Incisors Using Convolutional Neural Network
SSRN
收藏 引用
SSRN 2022年
作者: Liu, Tianyu Ye, Yingzhi Liu, Chengcheng Chen, Jing Liu, Yuehua Xing, Wenyu Ta, Dean Academy for Engineering and Technology Fudan University Shanghai200433 China Department of Orthodontics Shanghai Stomatological Hospital School of Stomatology Fudan University Shanghai200001 China Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Fudan University Shanghai200001 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China Center for Medical Engineering School of Information Science and Technology Fudan University Shanghai200438 China
The aim of this study was to propose an automated diagnosis method for alveolar dehiscence in the anterior teeth using convolutional neural network (CNN).The Cone-beam computed tomography (CBCT) scanning was performed... 详细信息
来源: 评论
Histological grade and type classification of glioma using Magnetic Resonance Imaging
Histological grade and type classification of glioma using M...
收藏 引用
International Congress on image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI)
作者: Yuan Gao Zhifeng Shi Yuanyuan Wang Jinhua Yu Liang Chen Yi Guo Qi Zhang Ying Mao Department of Electronic Engineering Fudan University Shanghai China Department of Neurosurgery Fudan University Shanghai China Key laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai Shanghai China School of Communication and Information Engineering Shanghai University Shanghai China
Glioma is one of the most common brain tumors with high mortality and its histological grading and typing is important both in therapeutic decision and prognosis evaluation. This paper aims at using the high-throughpu... 详细信息
来源: 评论
Residual block-based multi-label classification and localization network with integral regression for vertebrae labeling
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Chunli Yao, Demin Zhuang, Han Wang, Hui Shi, Yonghong Song, Zhijian Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai Key Laboratory of Medical Imaging Computing Computer Assisted Intervention Shanghai200032 China Medical Research Center and Department of Anatomy Histology and Embryology School of Basic Medical Sciences Fudan University
Accurate identification and localization of the vertebrae in CT scans is a critical and standard preprocessing step for clinical spinal diagnosis and treatment. Existing methods are mainly based on the integration of ... 详细信息
来源: 评论