咨询与建议

限定检索结果

文献类型

  • 92 篇 期刊文献
  • 55 篇 会议

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 97 篇 工学
    • 57 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 35 篇 生物医学工程(可授...
    • 31 篇 生物工程
    • 24 篇 光学工程
    • 20 篇 信息与通信工程
    • 18 篇 仪器科学与技术
    • 14 篇 机械工程
    • 10 篇 电气工程
    • 9 篇 控制科学与工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 化学工程与技术
    • 4 篇 土木工程
    • 3 篇 建筑学
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 测绘科学与技术
  • 60 篇 理学
    • 30 篇 生物学
    • 27 篇 数学
    • 17 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 化学
    • 3 篇 系统科学
  • 39 篇 医学
    • 36 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 17 篇 管理学
    • 12 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 5 篇 教育学
    • 5 篇 教育学
  • 2 篇 农学

主题

  • 7 篇 deep learning
  • 7 篇 magnetic resonan...
  • 6 篇 ultrasonic imagi...
  • 6 篇 semantic segment...
  • 5 篇 image segmentati...
  • 4 篇 image fusion
  • 4 篇 imaging
  • 4 篇 three-dimensiona...
  • 4 篇 feature extracti...
  • 4 篇 electrocardiogra...
  • 3 篇 phantoms
  • 3 篇 semantics
  • 3 篇 image classifica...
  • 3 篇 pathology
  • 3 篇 training
  • 3 篇 image resolution
  • 2 篇 endoscopy
  • 2 篇 noise reduction
  • 2 篇 support vector m...
  • 2 篇 ultrasonic backs...

机构

  • 31 篇 shanghai key lab...
  • 25 篇 digital medical ...
  • 22 篇 digital medical ...
  • 21 篇 department of el...
  • 21 篇 key laboratory o...
  • 19 篇 shanghai key lab...
  • 12 篇 academy for engi...
  • 8 篇 shanghai key lab...
  • 7 篇 the key laborato...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 3 篇 shandong compute...
  • 3 篇 department of el...
  • 3 篇 department of ne...
  • 3 篇 the department o...
  • 3 篇 shanghai key lab...
  • 3 篇 key laboratory o...
  • 3 篇 the digital medi...

作者

  • 36 篇 song zhijian
  • 33 篇 wang manning
  • 22 篇 qu linhao
  • 18 篇 liu shaolei
  • 16 篇 fu kexue
  • 13 篇 yuanyuan wang
  • 11 篇 yang zhiwei
  • 10 篇 luo xiaoyuan
  • 9 篇 manning wang
  • 9 篇 wang shuo
  • 9 篇 wang yuanyuan
  • 9 篇 meng yucong
  • 8 篇 yang cuiwei
  • 8 篇 jinhua yu
  • 7 篇 kexue fu
  • 7 篇 yi guo
  • 7 篇 li shiman
  • 7 篇 shi yonghong
  • 7 篇 chen xinrong
  • 5 篇 yuan mingzhi

语言

  • 118 篇 英文
  • 23 篇 其他
  • 6 篇 中文
检索条件"机构=Shanghai Key Laboratory of Medical Image Computing and Computer-Assisted Intervention"
147 条 记 录,以下是61-70 订阅
排序:
OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology image Classification
arXiv
收藏 引用
arXiv 2023年
作者: Qu, Linhao Ma, Yingfan Yang, Zhiwei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China Academy for Engineering & Technology Fudan University Shanghai200433 China
Active learning (AL) is an effective approach to select the most informative samples to label so as to reduce the annotation cost. Existing AL methods typically work under the closed-set assumption, i.e., all classes ... 详细信息
来源: 评论
POS-BERT: Point Cloud One-Stage BERT Pre-Training
arXiv
收藏 引用
arXiv 2022年
作者: Fu, Kexue Gao, Peng Liu, Shaolei Zhang, Renrui Qiao, Yu Wang, Manning Digital Medical Research Center School of Basic Medical Sciences Fudan University China Shanghai AI Lab China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention China
Recently, the pre-training paradigm combining Transformer and masked language modeling has achieved tremendous success in NLP, images, and point clouds, such as BERT. However, directly extending BERT from NLP to point... 详细信息
来源: 评论
A Five-Channel Weighted Real-Time Algorithm for High-Density Electrodes Spike Sorting
A Five-Channel Weighted Real-Time Algorithm for High-Density...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Jiaxin He Chongyuan Ren Yu Ma Yizhou Jiang Yajie Qin School of Information Science and Technology Fudan University Shanghai China Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai Shanghai China Shanghai Engineering Research Center of Assistive Devices Shanghai China
With the application of high-density neural probes, a neuron can be detected by multiple adjacent probes, and the traditional single-channel spike sorting is no longer suitable. In this paper, we propose a five-channe...
来源: 评论
TransFuse: A Unified Transformer-based image Fusion Framework using Self-supervised Learning
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Li, Shiman Yin, Siqi Qiao, Qin Song, Zhijian Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China
image fusion is a technique to integrate information from multiple source images with complementary information to improve the richness of a single image. Due to insufficient task-specific training data and correspond... 详细信息
来源: 评论
DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide image Classification
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Luo, Xiaoyuan Liu, Shaolei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Fudan University Shanghai200032 China
Multiple Instance Learning (MIL) is widely used in analyzing histopathological Whole Slide images (WSIs). However, existing MIL methods do not explicitly model the data distribution, and instead they only learn a bag-... 详细信息
来源: 评论
Rethinking Multi-Exposure image Fusion with Extreme and Diverse Exposure Levels: A Robust Framework Based on Fourier Transform and Contrastive Learning
SSRN
收藏 引用
SSRN 2022年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Song, Zhijian Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China
Multi-exposure image fusion (MEF) is an important technique for generating high dynamic range images. However, most existing MEF studies focus on fusing a moderately over-exposed image and a moderately under-exposed i... 详细信息
来源: 评论
Towards Label-efficient Automatic Diagnosis and Analysis: A Comprehensive Survey of Advanced Deep Learning-based Weakly-supervised, Semi-supervised and Self-supervised Techniques in Histopathological image Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Liu, Siyu Liu, Xiaoyu Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Histopathological images contain abundant phenotypic information and pathological patterns, which are the gold standards for disease diagnosis and essential for the prediction of patient prognosis and treatment outcom... 详细信息
来源: 评论
Transfuse: A Unified Transformer-Based image Fusion Framework Using Self-Supervised Learning
SSRN
收藏 引用
SSRN 2022年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Li, Shiman Yin, Siqi Qiao, Qin Song, Zhijian Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China
image fusion is a technique to integrate information from multiple source images with complementary information to improve the richness of a single image. Due to insufficient task-specific training data and correspond... 详细信息
来源: 评论
Bi-directional Weakly Supervised Knowledge Distillation for Whole Slide image Classification
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Luo, Xiaoyuan Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
computer-aided pathology diagnosis based on the classification of Whole Slide image (WSI) plays an important role in clinical practice, and it is often formulated as a weakly-supervised Multiple Instance Learning (MIL... 详细信息
来源: 评论
Reducing Domain Gap in Frequency and Spatial domain for Cross-modality Domain Adaptation on medical image Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Shaolei Yin, Siqi Qu, Linhao Wang, Manning Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
Unsupervised domain adaptation (UDA) aims to learn a model trained on source domain and performs well on unlabeled target domain. In medical image segmentation field, most existing UDA methods depend on adversarial le... 详细信息
来源: 评论