咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 77 篇 期刊文献

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 122 篇 工学
    • 75 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 32 篇 信息与通信工程
    • 21 篇 生物工程
    • 20 篇 光学工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 80 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 23 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 31 篇 管理学
    • 22 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 60 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 176 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=ShenZhen Key Lab of Computer Vision and Pattern Recognition"
180 条 记 录,以下是41-50 订阅
排序:
Rapid disparity prediction for dynamic scenes
Rapid disparity prediction for dynamic scenes
收藏 引用
9th International Symposium on Advances in Visual Computing, ISVC 2013
作者: Jiang, Jun Cheng, Jun Chen, Baowen Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Chinese University of Hong Kong Hong Kong Hong Kong Shsenzhen Institute of Information Technology China Guangdong Provincial Key Laboratory of Robotics and Intelligent System China Shenzhen Key Laboratory of Computer Vision and Pattern Recognition China
Real-time 3D sensing plays a critical role in robotic navigation, video surveillance and human-computer interaction, etc. When computing 3D structures of dynamic scenes from stereo sequences, spatiotemporal stereo and... 详细信息
来源: 评论
Finding discriminative filters for specific degradations in blind super-resolution  21
Finding discriminative filters for specific degradations in ...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Liangbin Xie Xintao Wang Chao Dong Zhongang Qi Ying Shan Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences and ARC Lab Tencent PCG ARC Lab Tencent PCG Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences and Shanghai AI Laboratory Shanghai China
Recent blind super-resolution (SR) methods typically consist of two branches, one for degradation prediction and the other for conditional restoration. However, our experiments show that a one-branch network can achie...
来源: 评论
New texture-spatial features for keyword spotting in video images  3
New texture-spatial features for keyword spotting in video i...
收藏 引用
3rd IAPR Asian Conference on pattern recognition, ACPR 2015
作者: Shivakumara, Palaiahnakote Liang, Guozhu Roy, Sangheeta Pal, Umapada Lu, Tong Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
keyword spotting in video document images is challenging due to low resolution and complex background of video images. We propose the combination of Texture-Spatial-Features (TSF) for keyword spotting in video images ... 详细信息
来源: 评论
Symmetry features for license plate classification
收藏 引用
CAAI Transactions on Intelligence Technology 2018年 第3期3卷 176-183页
作者: Karpuravalli Srinivas Raghunandan Palaiahnakote Shivakumara Lolika Padmanabhan Govindaraju Hemantha Kumar Tong Lu Umapada Pal Department of Studies in Computer Science University of Mysore Karnataka India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia PES Institute of Technology Bangalore Karnataka India National Key Lab for Novel Software Technology Nanjing University Nanjing People's Republic of China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
Achieving high recognition rate for license plate images is challenging due to multi-type images. We present new symmetry features based on stroke width for classifying each input license image as private, taxi, cursi... 详细信息
来源: 评论
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reconstruction
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reco...
收藏 引用
International Conference on computer vision (ICCV)
作者: Xiaoxing Zeng Xiaojiang Peng Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology University of Chinese Academy of Sciences China
Reconstructing the detailed geometric structure from a single face image is a challenging problem due to its ill-posed nature and the fine 3D structures to be recovered. This paper proposes a deep Dense-Fine-Finer Net... 详细信息
来源: 评论
COCAS+: Large-Scale Clothes-Changing Person Re-Identification With Clothes Templates
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2023年 第4期33卷 1839-1853页
作者: Li, Shihua Chen, Haobin Yu, Shijie He, Zhiqun Zhu, Feng Zhao, Rui Chen, Jie Qiao, Yu Institute of Microelectronics Chinese Academy of Sciences Beijing100029 China University of Chinese Academy of Sciences School of Microelectronics Beijing100049 China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Key Laboratory of Computer Vision and Pattern Recognition The SIAT-SenseTime Joint Laboratory Beijing100045 China SenseTime Research Shenzhen518048 China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai200240 China
Recent years person re-identification (ReID) has been developed rapidly due to its broad practical applications. Most existing benchmarks assume that the same person wears the same clothes across captured images, whil... 详细信息
来源: 评论
ARNET: ACTIVE-REFERENCE NETWORK FOR FEW-SHOT IMAGE SEMANTIC SEGMENTATION
ARNET: ACTIVE-REFERENCE NETWORK FOR FEW-SHOT IMAGE SEMANTIC ...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Shi, Guangchen Wu, Yirui Palaiahnakote, Shivakumara Pal, Umapada Lu, Tong College of Computer and Information Hohai University China Department of Computer System and Information Technology University of Malaya Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute India National Key Lab for Novel Software Technology Nanjing University China
To make predictions on unseen classes, few-shot segmentation becomes a research focus recently. However, most methods build on pixel-level annotation requiring quantity of manual work. Moreover, inherent information o... 详细信息
来源: 评论
PA3D: Pose-Action 3D Machine for Video recognition
PA3D: Pose-Action 3D Machine for Video Recognition
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: An Yan Yali Wang Zhifeng Li Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Tencent AI Lab
Recent studies have witnessed the successes of using 3D CNNs for video action recognition. However, most 3D models are built upon RGB and optical flow streams, which may not fully exploit pose dynamics, i.e., an impor... 详细信息
来源: 评论
Deformation Robust Text Spotting with Geometric Prior
arXiv
收藏 引用
arXiv 2023年
作者: Hao, Xixuan Zhang, Aozhong Meng, Xianze Fu, Bin ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The University of Hong Kong Hong Kong
The goal of text spotting is to perform text detection and recognition in an end-to-end manner. Although the diversity of luminosity and orientation in scene texts has been widely studied, the font diversity and shape... 详细信息
来源: 评论
ES6D: A Computation Efficient and Symmetry-Aware 6D Pose Regression Framework
arXiv
收藏 引用
arXiv 2022年
作者: Mo, Ningkai Gan, Wanshui Yokoya, Naoto Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The University of Tokyo Japan RIKEN Japan
In this paper, a computation efficient regression framework is presented for estimating the 6D pose of rigid objects from a single RGB-D image, which is applicable to handling symmetric objects. This framework is desi... 详细信息
来源: 评论