咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 77 篇 期刊文献

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 122 篇 工学
    • 75 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 32 篇 信息与通信工程
    • 21 篇 生物工程
    • 20 篇 光学工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 80 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 23 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 31 篇 管理学
    • 22 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 60 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 176 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=ShenZhen Key Lab of Computer Vision and Pattern Recognition"
180 条 记 录,以下是51-60 订阅
排序:
A semantic model for video based face recognition
A semantic model for video based face recognition
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Dihong Gong Kai Zhu Zhifeng Li Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The Chinese University of Hong Kong Hong Kong
Video-based face recognition has attracted a great deal of attention in recent years due to its wide applications. The challenge of video-based face recognition comes from several aspects. First, video data involves m... 详细信息
来源: 评论
KV Inversion: KV Embeddings Learning for Text-Conditioned Real Image Action Editing
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Qin, Jin Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Text-conditioned image editing is a recently emerged and highly practical task, and its potential is immeasurable. However, most of the concurrent methods are unable to perform action editing, i.e. they can not produc... 详细信息
来源: 评论
Bootstrap Diffusion Model Curve Estimation for High Resolution Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Learning-based methods have attracted a lot of research attention and led to significant improvements in low-light image enhancement. However, most of them still suffer from two main problems: expensive computational ... 详细信息
来源: 评论
Complex 3D General Object Reconstruction from Line Drawings
Complex 3D General Object Reconstruction from Line Drawings
收藏 引用
International Conference on computer vision (ICCV)
作者: Linjie Yang Jianzhuang Liu Xiaoou Tang Department of Information Engineering Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Chinese Academy of Sciences China
An important topic in computer vision is 3D object reconstruction from line drawings. Previous algorithms either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, w... 详细信息
来源: 评论
Dynamic Feature Queue for Surveillance Face Anti-spoofing via Progressive Training
Dynamic Feature Queue for Surveillance Face Anti-spoofing vi...
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: keyao Wang Mouxiao Huang Guosheng Zhang Haixiao Yue Gang Zhang Yu Qiao Department of Computer Vision Technology (VIS) Baidu Inc. ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences
In recent years, face recognition systems have faced increasingly security threats, making it essential to employ Face Anti-spoofing (FAS) to protect against various types of attacks in traditional scenarios like phon...
来源: 评论
A Maximum Entropy Feature Descriptor for Age Invariant Face recognition
A Maximum Entropy Feature Descriptor for Age Invariant Face ...
收藏 引用
IEEE Conference on computer vision and pattern recognition
作者: Dihong Gong Zhifeng Li Dacheng Tao Jianzhuang Liu Xuelong Li Shenzhen Key Lab. of Comput. Vision & Pattern Recognition Shenzhen Inst. of Adv. Technol. Shenzhen China
In this paper, we propose a new approach to overcome the representation and matching problems in age invariant face recognition. First, a new maximum entropy feature descriptor (MEFD) is developed that encodes the mic... 详细信息
来源: 评论
Frame attention networks for facial expression recognition in videos
arXiv
收藏 引用
arXiv 2019年
作者: Meng, Debin Peng, Xiaojiang Wang, Kai Qiao, Yu Shenzhen Institutes of Advanced Technology Chinese Academy of Science Shenzhen China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen China University of Chinese Academy of Sciences Beijing China
The video-based facial expression recognition aims to classify a given video into several basic emotions. How to integrate facial features of individual frames is crucial for this task. In this paper, we propose the F... 详细信息
来源: 评论
RankSRGAN: Super resolution generative adversarial networks with learning to rank
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Lab Shanghai China
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
Saliency attention based abnormal event detection in video
Saliency attention based abnormal event detection in video
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Wang Huan Huiwen Guo Xinyu Wu Shenzhen Key Lab for Computer Vision and Pattern Recognition University of Chinese Academy of Sicences Department of Mechanical and Automation Engineering The Chinese University of Hong Kong
Most existing methods for abnormal event detection in the literature are relied on a training phase. Different from conventional approaches for abnormal event detection, a saliency attention based abnormal event detec... 详细信息
来源: 评论
RankSRGAN: Generative Adversarial Networks With Ranker for Image Super-Resolution
RankSRGAN: Generative Adversarial Networks With Ranker for I...
收藏 引用
International Conference on computer vision (ICCV)
作者: Wenlong Zhang Yihao Liu Chao Dong Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论