咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 75 篇 期刊文献

馆藏范围

  • 178 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 120 篇 工学
    • 73 篇 计算机科学与技术...
    • 72 篇 软件工程
    • 31 篇 信息与通信工程
    • 20 篇 光学工程
    • 20 篇 生物工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 6 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 22 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 30 篇 管理学
    • 21 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 58 篇 qiao yu
  • 28 篇 yu qiao
  • 26 篇 dong chao
  • 17 篇 wang yali
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 pal umapada
  • 16 篇 palaiahnakote sh...
  • 16 篇 lu tong
  • 14 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 174 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=ShenZhen Key Lab of Computer Vision and Pattern Recognition"
178 条 记 录,以下是81-90 订阅
排序:
Digging into Uncertainty in Self-supervised Multi-view Stereo
Digging into Uncertainty in Self-supervised Multi-view Stere...
收藏 引用
International Conference on computer vision (ICCV)
作者: Hongbin Xu Zhipeng Zhou Yali Wang Wenxiong Kang Baigui Sun Hao Li Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Alibaba Group Pazhou Laboratory Shanghai AI Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
EFFICIENT ONLINE labEL CONSISTENT HASHING FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
EFFICIENT ONLINE LABEL CONSISTENT HASHING FOR LARGE-SCALE CR...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Yi, Jinhan Liu, Xin Cheung, Yiu-Ming Xu, Xing Fan, Wentao He, Yi Department of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Lab. of Computer Vision and Pattern Recognition Fujian Key Lab. of Big Data Intelligence and Security China Department of Computer Science Hong Kong Baptist University Kowloon Hong Kong School of Computer Science and Engineering University of Electronic Science and Technology of China China Provincial Key Laboratory for Computer Information Processing Technology Soochow University China
Existing cross-modal hashing still faces three challenges: (1) Most batch-based methods are unsuitable for processing large-scale and streaming data. (2) Current online methods often suffer from insufficient semantic ... 详细信息
来源: 评论
Digging into uncertainty in self-supervised multi-view stereo
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Wang, Yali Kang, Wenxiong Sun, Baigui Li, Hao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Shanghai AI Laboratory Alibaba Group Pazhou Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Anomaly Handwritten Text Detection for Automatic Descriptive Answer Evaluation  11
Anomaly Handwritten Text Detection for Automatic Descriptive...
收藏 引用
11th International Conference on Computing and pattern recognition, ICCPR 2022
作者: Chatterjee, Nilanjana Shivakumara, Palaiahnaakote Pal, Umapada Lu, Tong Lu, Yue Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China
Although there are advanced technologies for character recognition, automatic descriptive answer evaluation is an open challenge for the document image analysis community due to large diversified handwritten text and ... 详细信息
来源: 评论
Suppressing uncertainties for large-scale facial expression recognition
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Kai Peng, Xiaojiang Yang, Jianfei Lu, Shijian Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Nanyang Technological University Singapore
Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. T... 详细信息
来源: 评论
Multiple Transfer Learning and Multi-label Balanced Training Strategies for Facial AU Detection In the Wild
Multiple Transfer Learning and Multi-label Balanced Training...
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Sijie Ji Kai Wang Xiaojiang Peng Jianfei Yang Zhaoyang Zeng Yu Qiao Nanyang Technological University Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science Sun Yat-Sen University China
This paper 1 presents SIAT-NTU solution and results of facial action unit (AU) detection in the EmotiNet Challenge 2020. The task aims to detect 23 AUs from facial images in the wild, and its main difficulties lie in... 详细信息
来源: 评论
Suppressing Uncertainties for Large-Scale Facial Expression recognition
Suppressing Uncertainties for Large-Scale Facial Expression ...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Kai Wang Xiaojiang Peng Jianfei Yang Shijian Lu Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Nanyang Technological University Singapore
Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. T... 详细信息
来源: 评论
ONLINE ADAPTIVE DICTIONARY LEARNING AND WEIGHTED SPARSE CODING FOR ABNORMALITY DETECTION
ONLINE ADAPTIVE DICTIONARY LEARNING AND WEIGHTED SPARSE CODI...
收藏 引用
IEEE International Conference on Image Processing
作者: Sheng Han Ruiqing Fu Suzhen Wang Xinyu Wu Shenzhen Key Lab for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The Chinese University of Hong Kong
This paper focuses mainly on adaptive dictionary updating and abnormality detection via weighted space coding in video surveillance. Generally, abnormality analysis conducted on a large amount of video data is very co... 详细信息
来源: 评论
Geometry sharing network for 3D point cloud classification and segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Mingye Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Siat Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
In spite of the recent progresses on classifying 3D point cloud with deep CNNs, large geometric transformations like rotation and translation remain challenging problem and harm the final classification performance. T... 详细信息
来源: 评论
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-Identification
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Shijie Yu Shihua Li Dapeng Chen Rui Zhao Junjie Yan Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Institute of Microelectronics of the Chinese Academy of Sciences
Recent years have witnessed great progress in person re-identification (re-id). Several academic benchmarks such as Market1501, CUHK03 and DukeMTMC play important roles to promote the re-id research. To our best knowl... 详细信息
来源: 评论