咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 31 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 37 篇 计算机科学与技术...
    • 37 篇 软件工程
    • 18 篇 信息与通信工程
    • 12 篇 生物工程
    • 11 篇 光学工程
    • 8 篇 机械工程
    • 3 篇 化学工程与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 土木工程
    • 1 篇 轻工技术与工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 43 篇 理学
    • 27 篇 物理学
    • 14 篇 数学
    • 12 篇 生物学
    • 3 篇 化学
    • 1 篇 统计学(可授理学、...
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 12 篇 convolution
  • 6 篇 image reconstruc...
  • 4 篇 feature extracti...
  • 4 篇 optical resolvin...
  • 3 篇 distillation
  • 3 篇 generative adver...
  • 3 篇 pixels
  • 3 篇 face
  • 3 篇 computer vision
  • 3 篇 training
  • 2 篇 super-resolution
  • 2 篇 recognition (psy...
  • 2 篇 semantic segment...
  • 2 篇 deep neural netw...
  • 2 篇 training data
  • 2 篇 three-dimensiona...
  • 2 篇 face recognition
  • 2 篇 tensors
  • 2 篇 visualization
  • 2 篇 modulation

机构

  • 40 篇 shenzhen key lab...
  • 25 篇 university of ch...
  • 21 篇 siat branch shen...
  • 17 篇 sensetime resear...
  • 17 篇 shanghai ai labo...
  • 6 篇 shanghai ai lab
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 5 篇 qing yuan resear...
  • 5 篇 shenzhen key lab...
  • 5 篇 university of ma...
  • 5 篇 chinese universi...
  • 4 篇 shenzhen key lab...
  • 4 篇 the university o...
  • 4 篇 guangzhou power ...
  • 3 篇 shanghai jiao to...
  • 3 篇 shenzhen key lab...
  • 3 篇 national univers...
  • 3 篇 the chinese univ...
  • 2 篇 nanyang technolo...

作者

  • 48 篇 qiao yu
  • 23 篇 dong chao
  • 16 篇 yu qiao
  • 13 篇 wang yali
  • 8 篇 he junjun
  • 8 篇 gu jinjin
  • 8 篇 ren jimmy s.
  • 7 篇 li hongsheng
  • 6 篇 chen xiangyu
  • 6 篇 liu yihao
  • 6 篇 chao dong
  • 6 篇 he jingwen
  • 5 篇 zhao rui
  • 5 篇 cai haoming
  • 4 篇 zhou zhipeng
  • 4 篇 xu mingye
  • 4 篇 peng xiaojiang
  • 4 篇 liu jianbo
  • 4 篇 li kunchang
  • 4 篇 yu shijie

语言

  • 77 篇 英文
检索条件"机构=ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab"
77 条 记 录,以下是1-10 订阅
排序:
RBF-Softmax: Learning Deep Representative Prototypes with Radial Basis Function Softmax  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Zhang, Xiao Zhao, Rui Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Lab The Chinese University of Hong Kong Hong Kong SenseTime Research Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Deep neural networks have achieved remarkable successes in learning feature representations for visual classification. However, deep features learned by the softmax cross-entropy loss generally show excessive intra-cl... 详细信息
来源: 评论
Interactive Multi-dimension Modulation with Dynamic Controllable Residual Learning for Image Restoration  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: He, Jingwen Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Interactive image restoration aims to generate restored images by adjusting a controlling coefficient which determines the restoration level. Previous works are restricted in modulating image with a single coefficient... 详细信息
来源: 评论
Enhanced Quadratic Video Interpolation  16th
Enhanced Quadratic Video Interpolation
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
Conditional Sequential Modulation for Efficient Global Image Retouching  16th
Conditional Sequential Modulation for Efficient Global Image...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: He, Jingwen Liu, Yihao Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT - SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China University of Chinese Academy of Sciences Beijing China
Photo retouching aims at enhancing the aesthetic visual quality of images that suffer from photographic defects such as over/under exposure, poor contrast, inharmonious saturation. Practically, photo retouching can be... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Pixel Attention  16th
Efficient Image Super-Resolution Using Pixel Attention
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Zhao, Hengyuan Kong, Xiangtao He, Jingwen Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China University of Chinese Academy of Sciences Beijing China
This work aims at designing a lightweight convolutional neural network for image super resolution (SR). With simplicity bare in mind, we construct a pretty concise and effective network with a newly proposed pixel att... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Orientation robust scene text recognition in natural scene
Orientation robust scene text recognition in natural scene
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Chen, Xiaolong Zhang, Zhengfu Qiao, Yu Lai, Jiangyu Jiang, Jian Zhang, Zeyu Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
In recent years, scene text recognition has achieved significant improvement and various state-of-the-art recognition approaches have been proposed. This paper focused on recognizing text in natural photos of equipmen... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
The equipment nameplate dataset for scene text detection and recognition
The equipment nameplate dataset for scene text detection and...
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Chen, Xiaolong Zhang, Zhengfu Qiao, Yu Zhang, Pu Guo, Lanqing Chen, Wenrui Chen, Chen Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
In this paper, we introduce the Equipment Nameplate Dataset, a large dataset for scene text detection and recognition. Natural images in this dataset are taken in the wild and thus this dataset includes various intra-... 详细信息
来源: 评论
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL REPRESENTATION LEARNING  10
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Li, Kunchang Wang, Yali Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SenseTime Research The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to large local redundancy and complex global dependency between video frames. The recent advances in th... 详细信息
来源: 评论