咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 31 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 37 篇 计算机科学与技术...
    • 37 篇 软件工程
    • 18 篇 信息与通信工程
    • 12 篇 生物工程
    • 11 篇 光学工程
    • 8 篇 机械工程
    • 3 篇 化学工程与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 土木工程
    • 1 篇 轻工技术与工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 43 篇 理学
    • 27 篇 物理学
    • 14 篇 数学
    • 12 篇 生物学
    • 3 篇 化学
    • 1 篇 统计学(可授理学、...
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 12 篇 convolution
  • 6 篇 image reconstruc...
  • 4 篇 feature extracti...
  • 4 篇 optical resolvin...
  • 3 篇 distillation
  • 3 篇 generative adver...
  • 3 篇 pixels
  • 3 篇 face
  • 3 篇 computer vision
  • 3 篇 training
  • 2 篇 super-resolution
  • 2 篇 recognition (psy...
  • 2 篇 semantic segment...
  • 2 篇 deep neural netw...
  • 2 篇 training data
  • 2 篇 three-dimensiona...
  • 2 篇 face recognition
  • 2 篇 tensors
  • 2 篇 visualization
  • 2 篇 modulation

机构

  • 40 篇 shenzhen key lab...
  • 25 篇 university of ch...
  • 21 篇 siat branch shen...
  • 17 篇 sensetime resear...
  • 17 篇 shanghai ai labo...
  • 6 篇 shanghai ai lab
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 5 篇 qing yuan resear...
  • 5 篇 shenzhen key lab...
  • 5 篇 university of ma...
  • 5 篇 chinese universi...
  • 4 篇 shenzhen key lab...
  • 4 篇 the university o...
  • 4 篇 guangzhou power ...
  • 3 篇 shanghai jiao to...
  • 3 篇 shenzhen key lab...
  • 3 篇 national univers...
  • 3 篇 the chinese univ...
  • 2 篇 nanyang technolo...

作者

  • 48 篇 qiao yu
  • 23 篇 dong chao
  • 16 篇 yu qiao
  • 13 篇 wang yali
  • 8 篇 he junjun
  • 8 篇 gu jinjin
  • 8 篇 ren jimmy s.
  • 7 篇 li hongsheng
  • 6 篇 chen xiangyu
  • 6 篇 liu yihao
  • 6 篇 chao dong
  • 6 篇 he jingwen
  • 5 篇 zhao rui
  • 5 篇 cai haoming
  • 4 篇 zhou zhipeng
  • 4 篇 xu mingye
  • 4 篇 peng xiaojiang
  • 4 篇 liu jianbo
  • 4 篇 li kunchang
  • 4 篇 yu shijie

语言

  • 77 篇 英文
检索条件"机构=ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab"
77 条 记 录,以下是11-20 订阅
排序:
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network  17th
UDC-UNet: Under-Display Camera Image Restoration via U-shap...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China University of Macau Zhuhai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
Tensor Low-Rank Reconstruction for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Chen, Wanli Zhu, Xinge Sun, Ruoqi He, Junjun Li, Ruiyu Shen, Xiaoyong Yu, Bei The Chinese University of Hong Kong New Territories Hong Kong Shanghai Jiao Tong University Shanghai China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SmartMore Shenzhen China
Context information plays an indispensable role in the success of semantic segmentation. Recently, non-local self-attention based methods are proved to be effective for context information collection. Since the desire... 详细信息
来源: 评论
Learning to Predict Context-Adaptive Convolution for Semantic Segmentation  16th
Learning to Predict Context-Adaptive Convolution for Semanti...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Qiao, Yu Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Hong Kong
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can ef... 详细信息
来源: 评论
Adaptive Pyramid Context Network for Semantic Segmentation
Adaptive Pyramid Context Network for Semantic Segmentation
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Junjun He Zhongying Deng Lei Zhou Yali Wang Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Recent studies witnessed that context features can significantly improve the performance of deep semantic segmentation networks. Current context based segmentation methods differ with each other in how to construct co... 详细信息
来源: 评论
Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers
Modulating Image Restoration with Continual Levels via Adapt...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Jingwen He Chao Dong Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
In image restoration tasks, like denoising and super-resolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image... 详细信息
来源: 评论
MetaCleaner: Learning to Hallucinate Clean Representations for Noisy-labeled Visual recognition
MetaCleaner: Learning to Hallucinate Clean Representations f...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Weihe Zhang Yali Wang Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Deep Neural Networks (DNNs) have achieved remarkable successes in large-scale visual recognition. However, they often suffer from overfitting under noisy labels. To alleviate this problem, we propose a conceptually si... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
COCAS+: Large-Scale Clothes-Changing Person Re-Identification With Clothes Templates
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2023年 第4期33卷 1839-1853页
作者: Li, Shihua Chen, Haobin Yu, Shijie He, Zhiqun Zhu, Feng Zhao, Rui Chen, Jie Qiao, Yu Institute of Microelectronics Chinese Academy of Sciences Beijing100029 China University of Chinese Academy of Sciences School of Microelectronics Beijing100049 China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Key Laboratory of Computer Vision and Pattern Recognition The SIAT-SenseTime Joint Laboratory Beijing100045 China SenseTime Research Shenzhen518048 China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai200240 China
Recent years person re-identification (ReID) has been developed rapidly due to its broad practical applications. Most existing benchmarks assume that the same person wears the same clothes across captured images, whil... 详细信息
来源: 评论
Multi-dimension modulation for image restoration with dynamic controllable residual Learning
arXiv
收藏 引用
arXiv 2019年
作者: He, Jingwen Dong, Chao Qiaoy, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Based on the great success of deterministic learning, to interactively control the output effects has attracted increasingly attention in the image restoration field. The goal is to generate continuous restored images... 详细信息
来源: 评论
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reconstruction
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reco...
收藏 引用
International Conference on computer vision (ICCV)
作者: Xiaoxing Zeng Xiaojiang Peng Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology University of Chinese Academy of Sciences China
Reconstructing the detailed geometric structure from a single face image is a challenging problem due to its ill-posed nature and the fine 3D structures to be recovered. This paper proposes a deep Dense-Fine-Finer Net... 详细信息
来源: 评论