咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 31 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 37 篇 计算机科学与技术...
    • 37 篇 软件工程
    • 18 篇 信息与通信工程
    • 12 篇 生物工程
    • 11 篇 光学工程
    • 8 篇 机械工程
    • 3 篇 化学工程与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 土木工程
    • 1 篇 轻工技术与工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 43 篇 理学
    • 27 篇 物理学
    • 14 篇 数学
    • 12 篇 生物学
    • 3 篇 化学
    • 1 篇 统计学(可授理学、...
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 12 篇 convolution
  • 6 篇 image reconstruc...
  • 4 篇 feature extracti...
  • 4 篇 optical resolvin...
  • 3 篇 distillation
  • 3 篇 generative adver...
  • 3 篇 pixels
  • 3 篇 face
  • 3 篇 computer vision
  • 3 篇 training
  • 2 篇 super-resolution
  • 2 篇 recognition (psy...
  • 2 篇 semantic segment...
  • 2 篇 deep neural netw...
  • 2 篇 training data
  • 2 篇 three-dimensiona...
  • 2 篇 face recognition
  • 2 篇 tensors
  • 2 篇 visualization
  • 2 篇 modulation

机构

  • 40 篇 shenzhen key lab...
  • 25 篇 university of ch...
  • 21 篇 siat branch shen...
  • 17 篇 sensetime resear...
  • 17 篇 shanghai ai labo...
  • 6 篇 shanghai ai lab
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 5 篇 qing yuan resear...
  • 5 篇 shenzhen key lab...
  • 5 篇 university of ma...
  • 5 篇 chinese universi...
  • 4 篇 shenzhen key lab...
  • 4 篇 the university o...
  • 4 篇 guangzhou power ...
  • 3 篇 shanghai jiao to...
  • 3 篇 shenzhen key lab...
  • 3 篇 national univers...
  • 3 篇 the chinese univ...
  • 2 篇 nanyang technolo...

作者

  • 48 篇 qiao yu
  • 23 篇 dong chao
  • 16 篇 yu qiao
  • 13 篇 wang yali
  • 8 篇 he junjun
  • 8 篇 gu jinjin
  • 8 篇 ren jimmy s.
  • 7 篇 li hongsheng
  • 6 篇 chen xiangyu
  • 6 篇 liu yihao
  • 6 篇 chao dong
  • 6 篇 he jingwen
  • 5 篇 zhao rui
  • 5 篇 cai haoming
  • 4 篇 zhou zhipeng
  • 4 篇 xu mingye
  • 4 篇 peng xiaojiang
  • 4 篇 liu jianbo
  • 4 篇 li kunchang
  • 4 篇 yu shijie

语言

  • 77 篇 英文
检索条件"机构=ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab"
77 条 记 录,以下是21-30 订阅
排序:
PA3D: Pose-Action 3D Machine for Video recognition
PA3D: Pose-Action 3D Machine for Video Recognition
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: An Yan Yali Wang Zhifeng Li Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Tencent AI Lab
Recent studies have witnessed the successes of using 3D CNNs for video action recognition. However, most 3D models are built upon RGB and optical flow streams, which may not fully exploit pose dynamics, i.e., an impor... 详细信息
来源: 评论
Robust text line detection in equipment nameplate images
Robust text line detection in equipment nameplate images
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Lai, Jiangyu Guo, Lanqing Qiao, Yu Chen, Xiaolong Zhang, Zhengfu Liu, Canping Li, Ying Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIATSenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Scene text detection for equipment nameplates in the wild is important for equipment inspection robot since it enables inspection robot to take specific actions for different equipment's. Although text detection i... 详细信息
来源: 评论
Smallbignet: Integrating core and contextual views for video classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xianhang Wang, Yali Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To allevia... 详细信息
来源: 评论
Fast Texture Synthesis via Pseudo Optimizer
Fast Texture Synthesis via Pseudo Optimizer
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Wu Shi Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Texture synthesis using deep neural networks can generate high quality and diversified textures. However, it usually requires a heavy optimization process. The following works accelerate the process by using feed-forw... 详细信息
来源: 评论
Learning Attentive Pairwise Interaction for Fine-Grained Classification
arXiv
收藏 引用
arXiv 2020年
作者: Zhuang, Peiqin Wang, Yali Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input i... 详细信息
来源: 评论
Modulating image restoration with continual levels via adaptive feature modification layers
arXiv
收藏 引用
arXiv 2019年
作者: He, Jingwen Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Chinese University of Hong Kong
In image restoration tasks, like denoising and superresolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image ... 详细信息
来源: 评论
RankSRGAN: Generative Adversarial Networks With Ranker for Image Super-Resolution
RankSRGAN: Generative Adversarial Networks With Ranker for I...
收藏 引用
International Conference on computer vision (ICCV)
作者: Wenlong Zhang Yihao Liu Chao Dong Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
Enhanced quadratic video interpolation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SenseTime Research
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
RankSRGAN: Super resolution generative adversarial networks with learning to rank
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Lab Shanghai China
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
RankSRGAN: Generative adversarial networks with ranker for image super-resolution
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论