咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 31 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 37 篇 计算机科学与技术...
    • 37 篇 软件工程
    • 18 篇 信息与通信工程
    • 12 篇 生物工程
    • 11 篇 光学工程
    • 8 篇 机械工程
    • 3 篇 化学工程与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 土木工程
    • 1 篇 轻工技术与工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 43 篇 理学
    • 27 篇 物理学
    • 14 篇 数学
    • 12 篇 生物学
    • 3 篇 化学
    • 1 篇 统计学(可授理学、...
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 12 篇 convolution
  • 6 篇 image reconstruc...
  • 4 篇 feature extracti...
  • 4 篇 optical resolvin...
  • 3 篇 distillation
  • 3 篇 generative adver...
  • 3 篇 pixels
  • 3 篇 face
  • 3 篇 computer vision
  • 3 篇 training
  • 2 篇 super-resolution
  • 2 篇 recognition (psy...
  • 2 篇 semantic segment...
  • 2 篇 deep neural netw...
  • 2 篇 training data
  • 2 篇 three-dimensiona...
  • 2 篇 face recognition
  • 2 篇 tensors
  • 2 篇 visualization
  • 2 篇 modulation

机构

  • 40 篇 shenzhen key lab...
  • 25 篇 university of ch...
  • 21 篇 siat branch shen...
  • 17 篇 sensetime resear...
  • 17 篇 shanghai ai labo...
  • 6 篇 shanghai ai lab
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 5 篇 qing yuan resear...
  • 5 篇 shenzhen key lab...
  • 5 篇 university of ma...
  • 5 篇 chinese universi...
  • 4 篇 shenzhen key lab...
  • 4 篇 the university o...
  • 4 篇 guangzhou power ...
  • 3 篇 shanghai jiao to...
  • 3 篇 shenzhen key lab...
  • 3 篇 national univers...
  • 3 篇 the chinese univ...
  • 2 篇 nanyang technolo...

作者

  • 48 篇 qiao yu
  • 23 篇 dong chao
  • 16 篇 yu qiao
  • 13 篇 wang yali
  • 8 篇 he junjun
  • 8 篇 gu jinjin
  • 8 篇 ren jimmy s.
  • 7 篇 li hongsheng
  • 6 篇 chen xiangyu
  • 6 篇 liu yihao
  • 6 篇 chao dong
  • 6 篇 he jingwen
  • 5 篇 zhao rui
  • 5 篇 cai haoming
  • 4 篇 zhou zhipeng
  • 4 篇 xu mingye
  • 4 篇 peng xiaojiang
  • 4 篇 liu jianbo
  • 4 篇 li kunchang
  • 4 篇 yu shijie

语言

  • 77 篇 英文
检索条件"机构=ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab"
77 条 记 录,以下是31-40 订阅
排序:
Exploring emotion features and fusion strategies for audio-video emotion recognition
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Hengshun Meng, Debin Zhang, Yuanyuan Peng, Xiaojiang Du, Jun Wang, Kai Qiao, Yu University of Science and Technology of China China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
The audio-video based emotion recognition aims to classify a given video into basic emotions. In this paper, we describe our approaches in EmotiW 2019, which mainly explores emotion features and feature fusion strateg... 详细信息
来源: 评论
Exploring Multi-Scale Feature Propagation and Communication for Image Super Resolution
arXiv
收藏 引用
arXiv 2020年
作者: Feng, Ruicheng Guan, Weipeng Qiao, Yu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Acedamy of Sciences China Chinese University of Hong Kong Hong Kong
Multi-scale techniques have achieved great success in a wide range of computer vision tasks. However, while this technique is incorporated in existing works, there still lacks a comprehensive investigation on variants... 详细信息
来源: 评论
Suppressing Model Overfitting for Image Super-Resolution Networks
Suppressing Model Overfitting for Image Super-Resolution Net...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition Workshops
作者: Ruicheng Feng Jinjin Gu Yu Qiao Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The School of Science and Engineering The Chinese University of Hong Kong
Large deep networks have demonstrated competitive performance in single image super-resolution (SISR), with a huge volume of data involved. However, in real-world scenarios, due to the limited accessible training pair... 详细信息
来源: 评论
Geometry sharing network for 3D point cloud classification and segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Mingye Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Siat Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
In spite of the recent progresses on classifying 3D point cloud with deep CNNs, large geometric transformations like rotation and translation remain challenging problem and harm the final classification performance. T... 详细信息
来源: 评论
Suppressing uncertainties for large-scale facial expression recognition
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Kai Peng, Xiaojiang Yang, Jianfei Lu, Shijian Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Nanyang Technological University Singapore
Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. T... 详细信息
来源: 评论
Context-transformer: Tackling object confusion for few-shot detection
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Ze Wang, Yali Chen, Xianyu Liu, Jianzhuang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Huawei Noah’s Ark Lab. SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Few-shot object detection is a challenging but realistic scenario, where only a few annotated training images are available for training detectors. A popular approach to handle this problem is transfer learning, i.e.,... 详细信息
来源: 评论
Neighbourhood-guided feature reconstruction for occluded person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Chen, Dapeng Zhao, Rui Chen, Haobin Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China
Person images captured by surveillance cameras are often occluded by various obstacles, which lead to defective feature representation and harm person re-identification (Re-ID) performance. To tackle this challenge, w... 详细信息
来源: 评论
Suppressing Uncertainties for Large-Scale Facial Expression recognition
Suppressing Uncertainties for Large-Scale Facial Expression ...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Kai Wang Xiaojiang Peng Jianfei Yang Shijian Lu Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Nanyang Technological University Singapore
Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. T... 详细信息
来源: 评论
Multiple Transfer Learning and Multi-label Balanced Training Strategies for Facial AU Detection In the Wild
Multiple Transfer Learning and Multi-label Balanced Training...
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Sijie Ji Kai Wang Xiaojiang Peng Jianfei Yang Zhaoyang Zeng Yu Qiao Nanyang Technological University Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science Sun Yat-Sen University China
This paper 1 presents siat-NTU solution and results of facial action unit (AU) detection in the EmotiNet Challenge 2020. The task aims to detect 23 AUs from facial images in the wild, and its main difficulties lie in... 详细信息
来源: 评论
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-Identification
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Shijie Yu Shihua Li Dapeng Chen Rui Zhao Junjie Yan Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Institute of Microelectronics of the Chinese Academy of Sciences
Recent years have witnessed great progress in person re-identification (re-id). Several academic benchmarks such as Market1501, CUHK03 and DukeMTMC play important roles to promote the re-id research. To our best knowl... 详细信息
来源: 评论