咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 31 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 37 篇 计算机科学与技术...
    • 37 篇 软件工程
    • 18 篇 信息与通信工程
    • 12 篇 生物工程
    • 11 篇 光学工程
    • 8 篇 机械工程
    • 3 篇 化学工程与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 土木工程
    • 1 篇 轻工技术与工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 43 篇 理学
    • 27 篇 物理学
    • 14 篇 数学
    • 12 篇 生物学
    • 3 篇 化学
    • 1 篇 统计学(可授理学、...
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 12 篇 convolution
  • 6 篇 image reconstruc...
  • 4 篇 feature extracti...
  • 4 篇 optical resolvin...
  • 3 篇 distillation
  • 3 篇 generative adver...
  • 3 篇 pixels
  • 3 篇 face
  • 3 篇 computer vision
  • 3 篇 training
  • 2 篇 super-resolution
  • 2 篇 recognition (psy...
  • 2 篇 semantic segment...
  • 2 篇 deep neural netw...
  • 2 篇 training data
  • 2 篇 three-dimensiona...
  • 2 篇 face recognition
  • 2 篇 tensors
  • 2 篇 visualization
  • 2 篇 modulation

机构

  • 40 篇 shenzhen key lab...
  • 25 篇 university of ch...
  • 21 篇 siat branch shen...
  • 17 篇 sensetime resear...
  • 17 篇 shanghai ai labo...
  • 6 篇 shanghai ai lab
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 5 篇 qing yuan resear...
  • 5 篇 shenzhen key lab...
  • 5 篇 university of ma...
  • 5 篇 chinese universi...
  • 4 篇 shenzhen key lab...
  • 4 篇 the university o...
  • 4 篇 guangzhou power ...
  • 3 篇 shanghai jiao to...
  • 3 篇 shenzhen key lab...
  • 3 篇 national univers...
  • 3 篇 the chinese univ...
  • 2 篇 nanyang technolo...

作者

  • 48 篇 qiao yu
  • 23 篇 dong chao
  • 16 篇 yu qiao
  • 13 篇 wang yali
  • 8 篇 he junjun
  • 8 篇 gu jinjin
  • 8 篇 ren jimmy s.
  • 7 篇 li hongsheng
  • 6 篇 chen xiangyu
  • 6 篇 liu yihao
  • 6 篇 chao dong
  • 6 篇 he jingwen
  • 5 篇 zhao rui
  • 5 篇 cai haoming
  • 4 篇 zhou zhipeng
  • 4 篇 xu mingye
  • 4 篇 peng xiaojiang
  • 4 篇 liu jianbo
  • 4 篇 li kunchang
  • 4 篇 yu shijie

语言

  • 77 篇 英文
检索条件"机构=ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab"
77 条 记 录,以下是61-70 订阅
排序:
EfficientFCN: Holistically-guided decoding for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Shanghai China University of Macau Shanghai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
MorphMLP: An Efficient MLP-Like Backbone for Spatial-Temporal Representation Learning
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, David Junhao Li, Kunchang Wang, Yali Chen, Yunpeng Chandra, Shashwat Qiao, Yu Liu, Luoqi Shou, Mike Zheng National University of Singapore Singapore Meitu Inc China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory China
Recently, MLP-Like networks have been revived for image recognition. However, whether it is possible to build a generic MLP-Like architecture on video domain has not been explored, due to complex spatial-temporal mode... 详细信息
来源: 评论
Image quality assessment for perceptual image restoration: A new dataset, benchmark and metric
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Electrical and Information Engineering University of Sydney Australia Chinese University of Hong Kong Shenzhen Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent perceptual IR algorithms based on generative adversarial networks (GANs) have brought in ... 详细信息
来源: 评论
A comprehensive study on temporal modeling for online action detection
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
—Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years. A typical OAD system mainly consists of three modules: a frame-level feature extractor whi... 详细信息
来源: 评论
Dual-AI: Dual-path Actor Interaction Learning for Group Activity recognition
arXiv
收藏 引用
arXiv 2022年
作者: Han, Mingfei Zhang, David Junhao Wang, Yali Yan, Rui Yao, Lina Chang, Xiaojun Qiao, Yu ReLER AAII UTS United States National University of Singapore Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China RMIT University Australia University of New South Wales Australia Shanghai AI Laboratory Shanghai China
Learning spatial-temporal relation among multiple actors is crucial for group activity recognition. Different group activities often show the diversified interactions between actors in the video. Hence, it is often di... 详细信息
来源: 评论
PC-HMR: Pose calibration for 3d human mesh recovery from 2D images/videos
arXiv
收藏 引用
arXiv 2021年
作者: Luan, Tianyu Wang, Yali Zhang, Junhao Wang, Zhe Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China University of California Irvine United States
The end-to-end Human Mesh Recovery (HMR) approach (Kanazawa et al. 2018) has been successfully used for 3D body reconstruction. However, most HMR-based frameworks reconstruct human body by directly learning mesh param... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
Low-Resolution Action recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论
Multiple domain experts collaborative learning: Multi-source domain generalization for person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Zhu, Feng Chen, Dapeng Zhao, Rui Chen, Haobin Zhu, Jinguo Tang, Shixiang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China
Recent years have witnessed significant progress in person re-identification (ReID). However, current ReID approaches still suffer from considerable performance degradation when unseen testing domains exhibit differen... 详细信息
来源: 评论