咨询与建议

限定检索结果

文献类型

  • 61 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 87 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 47 篇 理学
    • 36 篇 数学
    • 10 篇 生物学
    • 8 篇 物理学
    • 7 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 44 篇 工学
    • 26 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 20 篇 信息与通信工程
    • 10 篇 生物工程
    • 7 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 电气工程
    • 3 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 7 篇 管理学
    • 7 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 5 篇 task analysis
  • 5 篇 feature extracti...
  • 4 篇 neural networks
  • 4 篇 computerized tom...
  • 4 篇 algebra
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 deep neural netw...
  • 3 篇 face recognition
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 error analysis
  • 2 篇 semantic segment...
  • 2 篇 image segmentati...
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 denoising
  • 2 篇 machine learning
  • 2 篇 classification a...
  • 2 篇 controllability

机构

  • 29 篇 shenzhen key lab...
  • 19 篇 shenzhen key lab...
  • 14 篇 college of mathe...
  • 8 篇 college of mathe...
  • 7 篇 school of electr...
  • 5 篇 the shenzhen key...
  • 5 篇 guangdong key la...
  • 5 篇 tsinghua shenzhe...
  • 4 篇 college of elect...
  • 3 篇 big data institu...
  • 3 篇 college of mathe...
  • 3 篇 pazhou lab
  • 3 篇 pcl research cen...
  • 3 篇 national center ...
  • 3 篇 shenzhen key lab...
  • 2 篇 school of mathem...
  • 2 篇 school of mathem...
  • 2 篇 guangdong key la...
  • 2 篇 guangdong key la...
  • 2 篇 department of co...

作者

  • 20 篇 lu jian
  • 11 篇 xu chen
  • 10 篇 jian lu
  • 8 篇 wang ran
  • 8 篇 zou wenbin
  • 6 篇 hu yaohua
  • 6 篇 xiao wei
  • 6 篇 li lin
  • 5 篇 tao dai
  • 5 篇 shu-tao xia
  • 4 篇 zhang yuhang
  • 4 篇 he chuanjiang
  • 4 篇 wang wei
  • 4 篇 xia xiang-gen
  • 4 篇 wenbin zou
  • 4 篇 liao muxin
  • 4 篇 ren zemin
  • 4 篇 binbin pan
  • 4 篇 tian shishun
  • 4 篇 jiang qingtang

语言

  • 85 篇 英文
  • 2 篇 其他
检索条件"机构=Shenzen Key Laboratory of Advanced Machine Learning and Applications"
87 条 记 录,以下是11-20 订阅
排序:
Non-Local and Fully Connected Tensor Network Decomposition for Remote Sensing Image Denoising
收藏 引用
高等学校计算数学学报(英文版) 2024年 第2期17卷 379-403页
作者: Zhihui Tu Shunda Chen Jian Lu Lin Li Qingtang Jiang Shenzhen Key Laboratory of Advanced Machine Learning and Applications School of Mathematical SciencesShenzhen UniversityShenzhen 518060China Shenzhen Key Laboratory of Advanced Machine Learning and Applications School of Mathematical SciencesShenzhen UniversityShenzhen 518060China National Center for Applied Mathematics Shenzhen(NCAMS) Shenzhen 518055China Pazhou Lab Guangzhou 510320China School of Electronic Engineering Xidian UniversityXi'an 710071China Department of Mathematics and Statistics University of Missouri-St.LouisSt.LouisMO 63121USA
Remote sensing images(RSIs)encompass abundant spatial and spec-tral/temporal information,finding wide applications in various ***,during image acquisition and transmission,RSI often encounter noise interference,which ... 详细信息
来源: 评论
IMPULSE NOISE REMOVAL BY L1 WEIGHTED NUCLEAR NORM MINIMIZATION
收藏 引用
Journal of Computational Mathematics 2023年 第6期41卷 1171-1191页
作者: Jian Lu Yuting Ye Yiqiu Dong Xiaoxia Liu Yuru Zou Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and StatisticsShenzhen UniversityShenzhen 518060China Guangdong Key Laboratory of Intelligent Information Processing Pazhou LabGuangzhou 510335China Department of Applied Mathematics and Computer Science Technical University of Denmark2800 Kgs.LyngbyDenmark
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research *** assigning different weights to singular values,the weighted nuclear norm minimization(... 详细信息
来源: 评论
Contextual-aware terrain segmentation network for navigable areas with triple aggregation
收藏 引用
Expert Systems with applications 2025年 287卷
作者: Wei Li Muxin Liao Wenbin Zou Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University 518060 Guangdong shenzhen China College of Electronics and Information Engineering Shenzhen University 518060 Guangdong shenzhen China School of Computer Science and Engineering Jiangxi Agricultural University 330045 Jiangxi Nanchang China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University 518060 Guangdong shenzhen China
Robust terrain feature representation is beneficial for accurately identifying navigable areas in autonomous vehicle systems, especially in complex and unstructured wild terrain environments. However, existing methods...
来源: 评论
Deep learning for Spectrum Sensing of Sub-Nyquist Sampled Signals  20
Deep Learning for Spectrum Sensing of Sub-Nyquist Sampled Si...
收藏 引用
20th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2024
作者: Li, Shiyao Ji, Hongbing Li, Lin Lu, Jian School of Electronic Engineering Xidian University Xi'an China College of Mathematics and Statistics Shenzhen University Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen China
Traditional Nyquist rate sampling faces significant challenges as communication technology progresses towards 6G. Multi-coset sampling emerges as a viable solution by reducing the sampling rate. However, this method n... 详细信息
来源: 评论
BP Neural Network-Based Deep Non-negative Matrix Factorization for Image Clustering  16th
BP Neural Network-Based Deep Non-negative Matrix Factorizati...
收藏 引用
16th International Conference on Intelligent Computing, ICIC 2020
作者: Zeng, Qianwen Chen, Wen-Sheng Pan, Binbin College of Mathematics and Statistics Shenzhen University Shenzhen China Guangdong Key Laboratory of Media Security Shenzhen University Shenzhen China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen518060 China
Deep non-negative matrix factorization (DNMF) is a promising method for non-negativity multi-layer feature extraction. Most of DNMF algorithms are repeatedly to run single-layer NMF to build the hierarchical structure... 详细信息
来源: 评论
Underwater Image Enhancement via Multi-color Space Correction and Fusion  3
Underwater Image Enhancement via Multi-color Space Correctio...
收藏 引用
3rd International Conference on Electronic Information Engineering and Computer, EIECT 2023
作者: Zhou, Chenyu Chen, Bo Zhang, Ying Chen, Wensheng Pan, Binbin Ji, Jing Shenzhen University Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen518060 China Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen518060 China
Underwater image enhancement, as an important branch of image processing, has attracted the attention of many scholars in recent years. Due to selective scattering and degradation of light in water, images captured un... 详细信息
来源: 评论
A Zeroing Neurodynamic Approach for Solving Time-Varying Optimization Problem with Interval-Valued Cost Function  13
A Zeroing Neurodynamic Approach for Solving Time-Varying Opt...
收藏 引用
13th International Conference on Information Science and Technology, ICIST 2023
作者: Li, Haojin Qin, Sitian Jia, Hongyu Feng, Jiqiang Department of Mathematics Harbin Institute of Technology Weihai264209 China Department of Mathematics and Statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
Most of the research on uncertainty and imprecision that is widespread in the real world can be abstracted into interval-valued optimization problems whose cost function or constraint function is a closed interval. In... 详细信息
来源: 评论
On the first negative Hecke eigenvalue of an automorphic representation of GL_(2)(A_(Q))
收藏 引用
Science China Mathematics 2021年 第11期64卷 2381-2394页
作者: Yuk-Kam Lau Ming Ho Ng Hengcai Tang Yingnan Wang Department of Mathematics The University of Hong KongHong KongChina Department of Mathematics The Chinese University of Hong KongHong KongChina Institute of Modern Mathematics School of Mathematics and StatisticsHenan UniversityKaifeng 475004China Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and StatisticsShenzhen UniversityShenzhen 518060China
Letπbe a self-dual irreducible cuspidal automorphic representation of GL_(2)(A_(Q))with trivial central *** Hecke eigenvalue λπ(n)is a real multiplicative function in *** show that λπ(n)<0 for some n<<Q^... 详细信息
来源: 评论
Multi-Label Active learning Driven by Uncertainty and Inconsistency
Multi-Label Active Learning Driven by Uncertainty and Incons...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Ran Wang Suhe Ye Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
Multi-label active learning (MLAL) can help learn a highperformance multi-label classifier based on a smaller training set by selecting and labeling high-quality samples iteratively. This paper proposes a new MLAL alg...
来源: 评论
A Novel ECG Signal Classification Algorithm Based on Common and Specific Components Separation  2nd
A Novel ECG Signal Classification Algorithm Based on Common ...
收藏 引用
2nd International Conference on Pattern Recognition and Artificial Intelligence, ICPRAI 2020
作者: Huang, Jianfeng Huang, Chao Yang, Lihua Zhang, Qian School of Financial Mathematics and Statistics Guangdong University of Finance Guangzhou China College of Mathematics and Statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Guangdong Province Key Laboratory of Computational Science School of Mathematics Sun Yat-sen University Guangzhou China
Electrocardiography (ECG) signal classification is a challenging task since the characteristics of ECG signals vary significantly for different patients. In this paper, we propose a new method for ECG signal classific... 详细信息
来源: 评论