咨询与建议

限定检索结果

文献类型

  • 328 篇 期刊文献
  • 270 篇 会议

馆藏范围

  • 598 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 412 篇 工学
    • 296 篇 计算机科学与技术...
    • 248 篇 软件工程
    • 128 篇 信息与通信工程
    • 74 篇 生物工程
    • 64 篇 控制科学与工程
    • 57 篇 电子科学与技术(可...
    • 50 篇 电气工程
    • 40 篇 光学工程
    • 32 篇 生物医学工程(可授...
    • 29 篇 机械工程
    • 20 篇 仪器科学与技术
    • 18 篇 动力工程及工程热...
    • 17 篇 化学工程与技术
    • 14 篇 网络空间安全
    • 13 篇 交通运输工程
    • 11 篇 材料科学与工程(可...
    • 10 篇 安全科学与工程
    • 7 篇 航空宇航科学与技...
  • 236 篇 理学
    • 116 篇 数学
    • 74 篇 生物学
    • 50 篇 物理学
    • 43 篇 统计学(可授理学、...
    • 22 篇 化学
    • 20 篇 系统科学
  • 95 篇 管理学
    • 50 篇 图书情报与档案管...
    • 47 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 21 篇 医学
    • 20 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 9 篇 法学
    • 9 篇 社会学
  • 5 篇 教育学
  • 4 篇 农学
  • 2 篇 经济学
  • 2 篇 军事学

主题

  • 25 篇 training
  • 19 篇 feature extracti...
  • 13 篇 deep learning
  • 11 篇 object detection
  • 11 篇 deep neural netw...
  • 11 篇 generative adver...
  • 11 篇 convolution
  • 11 篇 contrastive lear...
  • 10 篇 computational mo...
  • 10 篇 convolutional ne...
  • 9 篇 image reconstruc...
  • 8 篇 semantic segment...
  • 8 篇 optimization
  • 8 篇 energy efficienc...
  • 7 篇 reverberation
  • 7 篇 neural networks
  • 7 篇 face recognition
  • 7 篇 predictive model...
  • 7 篇 clustering algor...
  • 6 篇 image enhancemen...

机构

  • 73 篇 guangdong key la...
  • 52 篇 college of elect...
  • 50 篇 college of compu...
  • 45 篇 peng cheng labor...
  • 42 篇 guangdong key la...
  • 39 篇 guangdong key la...
  • 35 篇 guangdong provin...
  • 33 篇 national enginee...
  • 27 篇 shenzhen institu...
  • 19 篇 school of cyber ...
  • 16 篇 school of comput...
  • 15 篇 computer vision ...
  • 14 篇 computer vision ...
  • 14 篇 university of ch...
  • 14 篇 college of elect...
  • 12 篇 key laboratory o...
  • 11 篇 college of infor...
  • 10 篇 school of comput...
  • 10 篇 guangdong-hong k...
  • 9 篇 guangdong provin...

作者

  • 52 篇 shen linlin
  • 25 篇 huang qingming
  • 23 篇 cao xiaochun
  • 23 篇 xu qianqian
  • 22 篇 qiu guoping
  • 21 篇 li bin
  • 16 篇 yang zhiyong
  • 16 篇 linlin shen
  • 15 篇 huang jiwu
  • 15 篇 li xia
  • 14 篇 zou wenbin
  • 14 篇 xie weicheng
  • 13 篇 gao can
  • 13 篇 xie shengli
  • 12 篇 wang jinbao
  • 12 篇 kang jiawen
  • 11 篇 li yuanman
  • 10 篇 cao wenming
  • 10 篇 hou xianxu
  • 10 篇 pei jihong

语言

  • 529 篇 英文
  • 65 篇 其他
  • 4 篇 中文
检索条件"机构=Shenzhen Engineering Laboratory of Intelligent Information Processing for IoT"
598 条 记 录,以下是231-240 订阅
排序:
A Low Profile and Wideband Quadrifilar Helix Antenna with Wide Beamwidth
A Low Profile and Wideband Quadrifilar Helix Antenna with Wi...
收藏 引用
Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSRWTC)
作者: Jinshan Zeng Zhe Chen Yang Yang Tao Yuan State Key Laboratory of Radio Frequency Heterogeneous Integration Shenzhen China Guangdong Provincial Mobile Terminal Microwave and Millimeter-Wave Antenna Engineering Research Center Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen University Shenzhen China Hefei LCFC Information Technology Co. Ltd. Hefei China ATR National Key Laboratory of Defense Technology Shenzhen China
In this paper, we designed a broadband and wide-beam quadrifilar helix antenna (QHA). By loading a ceramic dielectric ring around the QHA, the beamwidth is significantly broadened. Specifically, the antenna achieves a... 详细信息
来源: 评论
PROGRESSIVE DISTRIBUTION ALIGNMENT BASED ON LABEL CORRECTION FOR UNSUPERVISED DOMAIN ADAPTATION
PROGRESSIVE DISTRIBUTION ALIGNMENT BASED ON LABEL CORRECTION...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Li, Yong Li, Desheng Lu, Yuwu Gao, Can Wang, Wenjing Lu, Jianglin College of Computer Science and Software Engineering Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing China
Unsupervised domain adaptation (UDA) aims to transfer knowledge between different domains. Most of the existing UDA methods try to align the conditional distribution between the source and target domains by utilizing ... 详细信息
来源: 评论
CAFUNeT:A small infrared target detection method in complex backgrounds
收藏 引用
中国体视学与图像分析 2023年 第4期28卷 332-348页
作者: 孙海蓉 康莉 HUANG Jianjun Guangdong Key Laboratory of Intelligent Information Processing ShenzhenChina College of Electronics and Information Engineering Shenzhen UniversityShenzhenGuangdongChina
Small infrared target detection has widespread applications in various fields including military,aviation,and ***,detecting small infrared targets in complex backgrounds remains *** detect small infrared targets,we pr... 详细信息
来源: 评论
CA-Edit: Causality-Aware Condition Adapter for High-Fidelity Local Facial Attribute Editing  39
CA-Edit: Causality-Aware Condition Adapter for High-Fidelity...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Xian, Xiaole He, Xilin Niu, Zenghao Zhang, Junliang Xie, Weicheng Song, Siyang Yu, Zitong Shen, Linlin Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China University of Exeter United Kingdom Great Bay University China
For efficient and high-fidelity local facial attribute editing, most existing editing methods either require additional finetuning for different editing effects or tend to affect beyond the editing regions. Alternativ...
来源: 评论
Shift from Texture-bias to Shape-bias: Edge Deformation-based Augmentation for Robust Object Recognition
Shift from Texture-bias to Shape-bias: Edge Deformation-base...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Xilin He Qinliang Lin Cheng Luo Weicheng Xie Siyang Song Feng Liu Linlin Shen Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University Shenzhen Institue of Artificial Intelligence & Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing University of Leicester
Recent studies have shown the vulnerability of CNNs under perturbation noises, which is partially caused by the reason that the well-trained CNNs are too biased toward the object texture, i.e., they make predictions m...
来源: 评论
Three-Way Decision-Based Co-Detection for Outliers
SSRN
收藏 引用
SSRN 2023年
作者: Tan, Xiaofeng Gao, Can Zhou, Jie Wen, Jiajun College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen518060 China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China
Outlier detection is an important research topic in data mining and machine learning. However, existing unsupervised outlier detection methods suffer from irrelevant and redundant attributes in high-dimensional data, ... 详细信息
来源: 评论
SAT-Net: Structure-Aware Transformer-Based Attention Fusion Network for Low-Quality Retinal Fundus Images Enhancement
收藏 引用
IEEE Transactions on Multimedia 2025年
作者: Wen, Yang Luo, Bin Shi, Wuzhen Ji, Jianhua Cao, Wenming Yang, Xiaokang Sheng, Bin Shenzhen University Guangdong Provincial Key Laboratory of Intelligent Information Processing College of Electronics and Information Engineering Shenzhen China Shanghai Jiao Tong University AI Institute Shanghai China Shanghai Jiao Tong University Department of Computer Science and Engineering Shanghai China
In ophthalmology diagnosis, high-fidelity fundus images are essential for disease diagnosis and intervention. However, many real-world clinical conditions may degrade the quality of the acquired images and thus affect... 详细信息
来源: 评论
A Quality-Centric Framework for Generic Deepfake Detection
arXiv
收藏 引用
arXiv 2024年
作者: Song, Wentang Yan, Zhiyuan Lin, Yuzhen Yao, Taiping Chen, Changsheng Chen, Shen Zhao, Yandan Ding, Shouhong Li, Bin Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Media Security The SZU-AFS Joint Innovation Center for AI Technology Shenzhen University Shenzhen518060 China The School of Electronic and Computer Engineering Peking University Shenzhen Graduate School Shenzhen518055 China Youtu Lab Tencent Shanghai200233 China
This paper addresses the generalization issue in deepfake detection by harnessing forgery quality in training data. Generally, the forgery quality of different deepfakes varies: some have easily recognizable forgery c... 详细信息
来源: 评论
Benchmarking Graph Representations and Graph Neural Networks for Multivariate Time Series Classification
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Wennuo Wu, Shiling Zhou, Yuzhi Luo, Cheng He, Xilin Xie, Weicheng Shen, Linlin Song, Siyang Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Provincial Key Laboratory of Intelligent Information Processing China HBUG Lab University of Exeter United Kingdom
Multivariate Time Series Classification (MTSC) enables the analysis if complex temporal data, and thus serves as a cornerstone in various real-world applications, ranging from healthcare to finance. Since the relation... 详细信息
来源: 评论
Look Inside for More: Internal Spatial Modality Perception for 3D Anomaly Detection
arXiv
收藏 引用
arXiv 2024年
作者: Liang, Hanzhe Xie, Guoyang Hou, Chengbin Wang, Bingshu Gao, Can Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Audencia Financial Technology Institute Shenzhen University Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Intelligent Manufacturing CATL Ningde China School of Computing and Artificial Intelligence Fuyao University of Science and Technology Fuzhou China School of Software Northwestern Polytechnical University Xi’an China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China
3D anomaly detection has recently become a significant focus in computer vision. Several advanced methods have achieved satisfying anomaly detection performance. However, they typically concentrate on the external str... 详细信息
来源: 评论