咨询与建议

限定检索结果

文献类型

  • 319 篇 期刊文献
  • 257 篇 会议

馆藏范围

  • 576 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 393 篇 工学
    • 279 篇 计算机科学与技术...
    • 245 篇 软件工程
    • 124 篇 信息与通信工程
    • 74 篇 生物工程
    • 52 篇 电子科学与技术(可...
    • 51 篇 控制科学与工程
    • 46 篇 电气工程
    • 40 篇 光学工程
    • 32 篇 生物医学工程(可授...
    • 29 篇 机械工程
    • 19 篇 仪器科学与技术
    • 18 篇 动力工程及工程热...
    • 17 篇 化学工程与技术
    • 14 篇 网络空间安全
    • 13 篇 交通运输工程
    • 11 篇 材料科学与工程(可...
    • 10 篇 安全科学与工程
    • 7 篇 航空宇航科学与技...
  • 235 篇 理学
    • 116 篇 数学
    • 74 篇 生物学
    • 50 篇 物理学
    • 43 篇 统计学(可授理学、...
    • 21 篇 化学
    • 20 篇 系统科学
  • 94 篇 管理学
    • 50 篇 图书情报与档案管...
    • 46 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 21 篇 医学
    • 20 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 9 篇 法学
    • 9 篇 社会学
  • 5 篇 教育学
  • 4 篇 农学
  • 2 篇 经济学
  • 2 篇 军事学

主题

  • 25 篇 training
  • 18 篇 feature extracti...
  • 13 篇 deep learning
  • 11 篇 object detection
  • 11 篇 deep neural netw...
  • 11 篇 generative adver...
  • 11 篇 convolution
  • 10 篇 computational mo...
  • 10 篇 convolutional ne...
  • 9 篇 image reconstruc...
  • 8 篇 semantic segment...
  • 8 篇 optimization
  • 8 篇 contrastive lear...
  • 8 篇 energy efficienc...
  • 7 篇 reverberation
  • 7 篇 neural networks
  • 7 篇 face recognition
  • 7 篇 predictive model...
  • 7 篇 clustering algor...
  • 6 篇 image enhancemen...

机构

  • 70 篇 guangdong key la...
  • 51 篇 college of elect...
  • 44 篇 college of compu...
  • 44 篇 peng cheng labor...
  • 42 篇 guangdong key la...
  • 39 篇 guangdong key la...
  • 27 篇 shenzhen institu...
  • 27 篇 guangdong provin...
  • 26 篇 national enginee...
  • 19 篇 school of cyber ...
  • 16 篇 school of comput...
  • 14 篇 university of ch...
  • 14 篇 college of elect...
  • 13 篇 computer vision ...
  • 12 篇 key laboratory o...
  • 12 篇 computer vision ...
  • 11 篇 college of infor...
  • 10 篇 school of comput...
  • 10 篇 guangdong-hong k...
  • 9 篇 guangdong key la...

作者

  • 49 篇 shen linlin
  • 25 篇 huang qingming
  • 23 篇 cao xiaochun
  • 23 篇 xu qianqian
  • 22 篇 qiu guoping
  • 20 篇 li bin
  • 16 篇 yang zhiyong
  • 16 篇 linlin shen
  • 15 篇 li xia
  • 14 篇 huang jiwu
  • 14 篇 zou wenbin
  • 13 篇 xie shengli
  • 12 篇 kang jiawen
  • 12 篇 xie weicheng
  • 11 篇 li yuanman
  • 10 篇 cao wenming
  • 10 篇 hou xianxu
  • 10 篇 pei jihong
  • 10 篇 gao can
  • 10 篇 chen changsheng

语言

  • 540 篇 英文
  • 32 篇 其他
  • 4 篇 中文
检索条件"机构=Shenzhen Engineering Laboratory of Intelligent Information Processing for IoT"
576 条 记 录,以下是71-80 订阅
排序:
Hybrid Feature Measurement based on Linear and Nonlinear Nonnegative Matrix Factorization  5
Hybrid Feature Measurement based on Linear and Nonlinear Non...
收藏 引用
5th International Conference on Algorithms, Computing and Artificial Intelligence, ACAI 2022
作者: Ye, Sicong Zhao, Yang Pei, Jihong The Guangdong Key Laboratory of Intelligent Information Processing College of Electronics and Information Engineering in Shenzhen University China College of Computer Science and Software Engineering Shenzhen University China
The nonnegative matrix factorization algorithm is an effective data dimensionality reduction method. The principle is to convert the image into a nonnegative linear combination of low dimensional basis images. Nonnega... 详细信息
来源: 评论
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Language-Image Pre-Training  24
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Lang...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Li, Yudong Hou, Xianxu Dezhi, Zheng Shen, Linlin Zhao, Zhe School of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Tencent AI Lab Beijing China
While significant progress has been made in multi-modal learning driven by large-scale image-text datasets, there is still a noticeable gap in the availability of such datasets within the facial domain. To facilitate ... 详细信息
来源: 评论
RHNet: A Real-Time High-Resolution Network for Surface Defect Detection  43
RHNet: A Real-Time High-Resolution Network for Surface Defec...
收藏 引用
43rd Chinese Control Conference, CCC 2024
作者: Wang, Yijie Ren, Zhigang Cai, Jianpu Wu, Zongze Xie, Shengli Shenzhen518060 China Guangdong University of Technology School of Automation Key Laboratory of Intelligent Information Processing and System Integration of IoT Ministry of Education Guangzhou510006 China Guangdong University of Technology Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing Guangzhou510006 China Guangzhou510006 China
In the industrial domain, surface defect detection after multiple processing steps is crucial for improving the outgoing quality of products. However, due to the characteristics of surface defects, such as low contras... 详细信息
来源: 评论
Learning the continuous-time optimal decision law from discrete-time rewards
收藏 引用
National Science Open 2024年 第5期3卷 130-147页
作者: Ci Chen Lihua Xie Kan Xie Frank Leroy Lewis Yilu Liu Shengli Xie School of Automation Guangdong University of TechnologyGuangdong Key Laboratory of IoT Information TechnologyGuangzhou 510006China Key Laboratory of Intelligent Information Processing and System Integration of IoT Ministry of EducationGuangzhou 510006China School of Electrical and Electronic Engineering Nanyang Technological UniversitySingapore 639798Singapore 111 Center for Intelligent Batch Manufacturing Based on IoT Technology Guangzhou 510006China UTA Research Institute the University of Texas at ArlingtonFort Worth 76118USA Department of Electrical Engineering and Computer Science University of TennesseeKnoxville 37996USA Oak Ridge National Laboratory Oak Ridge 37830USA Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing Guangzhou 510006China
The concept of reward is fundamental in reinforcement learning with a wide range of applications in natural and social *** an interpretable reward for decision-making that largely shapes the system's behavior has ... 详细信息
来源: 评论
Clustering Single-Cell Multi-Omics Data with Graph Contrastive Learning
Clustering Single-Cell Multi-Omics Data with Graph Contrasti...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Qi Li Jian-Wei Su Wen-Hui Wu College of Electronics and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China
Single-cell multi-omics sequencing technology has made significant advances, which provides rich information for cell type identification. As a label-free data, clustering methods have been employed on multi-omics dat... 详细信息
来源: 评论
Heterogeneous Laplace Distribution Noise Background Modeling for Sperm Detection in Microscopic Images  9
Heterogeneous Laplace Distribution Noise Background Modeling...
收藏 引用
9th International Conference on Computer and Communications, ICCC 2023
作者: Tian, Manqing Zhao, Yang Zeng, Ni Kang, Xiaomei Pei, Jihong Yang, Xuan Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing College of Electronics and Information Engineering Shenzhen China Shenzhen University College of Computer Science and Software Engineering Shenzhen China Huazhong University of Science and Technology Tongji Medical College Department of Reproductive Maternal and Child Health Hospital of Hubei Province Wuhan China
Semen quality assessment is a very important tool for the timely detection and treatment of infertility disorders. Many artificial intelligence methods for sperm image analysis have emerged in recent years. Sperm dete... 详细信息
来源: 评论
Adversarial Example Defense via Perturbation Grading Strategy  9th
Adversarial Example Defense via Perturbation Grading Strate...
收藏 引用
9th International Forum on Digital Multimedia Communication, IFTC 2022
作者: Zhu, Shaowei Lyu, Wanli Li, Bin Yin, Zhaoxia Luo, Bin Anhui Provincial Key Laboratory of Multimodal Cognitive Computation Anhui University Hefei China Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security Shenzhen University Shenzhen China School of Communication and Electronic Engineering East China Normal University Shanghai China
Deep Neural Networks have been widely used in many fields. However, studies have shown that DNNs are easily attacked by adversarial examples, which have tiny perturbations and greatly mislead the correct judgment of D... 详细信息
来源: 评论
Towards High-resolution 3D Anomaly Detection via Group-Level Feature Contrastive Learning  24
Towards High-resolution 3D Anomaly Detection via Group-Level...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Zhu, Hongze Xie, Guoyang Hou, Chengbin Dai, Tao Gao, Can Wang, Jinbao Shen, Linlin National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Computer Science City University of Hong Kong Hong Kong Hong Kong Department of Intelligent Manufacturing CATL Ningde China Fuzhou Fuyao Institute for Advanced Study Fuyao University of Science and Technology Fuzhou China College of Computer Science and Software Engineering Shenzhen University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
High-resolution point clouds (HRPCD) anomaly detection (AD) plays a critical role in precision machining and high-end equipment manufacturing. Despite considerable 3D-AD methods that have been proposed recently, they ... 详细信息
来源: 评论
M²-Net: Multitask-Learning-Based Multiband Signal Recognition Network
收藏 引用
IEEE Internet of Things Journal 2025年 第11期12卷 16543-16558页
作者: Xingjian Zhang Pengxu Wang Yuan Ma Jian Jiao Shaohua Wu Qinyu Zhang Guangdong Provincial Key Laboratory of ACNT Harbin Institute of Technology (Shenzhen) Shenzhen China Department of Boardband Communications Pengcheng Laboratory Shenzhen China State Key Laboratory of Radio Frequency Heterogeneous Integration the Guangdong Key Laboratory of Intelligent Information Processing and the College of Electronic and Information Engineering Shenzhen University Shenzhen China
Traditional signal recognition requires the design of multiple different deep neural networks to handle different signal recognition tasks, which not only fails to take into account the correlation among different sub... 详细信息
来源: 评论
Rethinking Distribution Alignment for Inter-class Fairness  1
收藏 引用
1st International Conference on Artificial Intelligence Security and Privacy, AIS and P 2023
作者: Ye, Jinhuang Wu, Jiawei Li, Zuoyong Zheng, Xianghan College of Computer and Big Data Fuzhou University Fuzhou350108 China School of Intelligent Systems Engineering Sun Yat-sen University Shenzhen518107 China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Control Engineering Minjiang University Fuzhou350121 China
Semi-supervised learning (SSL) is a successful paradigm that can use unlabelled data to alleviate the labelling cost problem in supervised learning. However, the excellent performance brought by SSL does not transfer ... 详细信息
来源: 评论