咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 75 篇 期刊文献

馆藏范围

  • 178 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 120 篇 工学
    • 73 篇 计算机科学与技术...
    • 72 篇 软件工程
    • 31 篇 信息与通信工程
    • 20 篇 光学工程
    • 20 篇 生物工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 6 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 22 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 30 篇 管理学
    • 21 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 59 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 174 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Lab for Computer Vision and Pattern Recognition"
178 条 记 录,以下是121-130 订阅
排序:
Tensor Low-Rank Reconstruction for Semantic Segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Wanli Zhu, Xinge Sun, Ruoqi He, Junjun Li, Ruiyu Shen, Xiaoyong Yu, Bei Chinese University of Hong Kong Hong Kong Shanghai Jiao Tong University China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SmartMore United States
Context information plays an indispensable role in the success of semantic segmentation. Recently, non-local self-attention based methods are proved to be effective for context information collection. Since the desire... 详细信息
来源: 评论
Low-Resolution Action recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论
Reflash Dropout in Image Super-Resolution
arXiv
收藏 引用
arXiv 2021年
作者: Kong, Xiangtao Liu, Xina Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China The University of Sydney Australia Shanghai AI Laboratory Shanghai China
Dropout is designed to relieve the overfitting problem in high-level vision tasks but is rarely applied in low-level vision tasks, like image super-resolution (SR). As a classic regression problem, SR exhibits a diffe... 详细信息
来源: 评论
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Data Science Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Shanghai China University of Macau Shanghai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
MorphMLP: An Efficient MLP-Like Backbone for Spatial-Temporal Representation Learning
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, David Junhao Li, Kunchang Wang, Yali Chen, Yunpeng Chandra, Shashwat Qiao, Yu Liu, Luoqi Shou, Mike Zheng National University of Singapore Singapore Meitu Inc China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory China
Recently, MLP-Like networks have been revived for image recognition. However, whether it is possible to build a generic MLP-Like architecture on video domain has not been explored, due to complex spatial-temporal mode... 详细信息
来源: 评论
MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yanbo Zhuang, Shaobin Li, Kunchang Yue, Zhengrong Qiao, Yu Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in the 3D world. To tackle this limitation, we introduce... 详细信息
来源: 评论
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
arXiv
收藏 引用
arXiv 2023年
作者: Xie, Liangbin Wang, Xintao Chen, Xiangyu Li, Gen Shan, Ying Zhou, Jiantao Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China ARC Lab Tencent PCG China Shanghai Artificial Intelligence Laboratory China Platform Technologies China
Image super-resolution (SR) with generative adversarial networks (GAN) has achieved great success in restoring realistic details. However, it is notorious that GAN-based SR models will inevitably produce unpleasant an... 详细信息
来源: 评论
Masked Image Training for Generalizable Deep Image Denoising
Masked Image Training for Generalizable Deep Image Denoising
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Haoyu Chen Jinjin Gu Yihao Liu Salma Abdel Magid Chao Dong Qiong Wang Hanspeter Pfister Lei Zhu The Hong Kong University of Science and Technology (Guangzhou) Shanghai AI Lab The University of Sydney ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Harvard University Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The Hong Kong University of Science and Technology
When capturing and storing images, devices inevitably introduce noise. Reducing this noise is a critical task called image denoising. Deep learning has become the de facto method for image denoising, especially with t...
来源: 评论
CRNN based jersey-bib number/text recognition in sports and marathon images  15
CRNN based jersey-bib number/text recognition in sports and ...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Nag, Sauradip Ramachandra, Raghavendra Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Kankanhalli, Mohan Department of Computer Science & Engineering Kalyani Government Engineering College Kalyani India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Norway Faculty of Computer System and Information Technology University of Malaya Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University China Department of Computer Science School of Computing National University of Singapore Singapore Singapore
The primary challenge in tracing the participants in sports and marathon video or images is to detect and localize the jersey/Bib number that may present in different regions of their outfit captured in cluttered envi... 详细信息
来源: 评论