咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 75 篇 期刊文献

馆藏范围

  • 178 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 120 篇 工学
    • 73 篇 计算机科学与技术...
    • 72 篇 软件工程
    • 31 篇 信息与通信工程
    • 20 篇 光学工程
    • 20 篇 生物工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 6 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 22 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 30 篇 管理学
    • 21 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 59 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 174 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Lab for Computer Vision and Pattern Recognition"
178 条 记 录,以下是131-140 订阅
排序:
A New U-Net Based License Plate Enhancement Model in Night and Day Images  5th
A New U-Net Based License Plate Enhancement Model in Night a...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Chowdhury, Pinaki Nath Shivakumara, Palaiahnakote Raghavendra, Ramachandra Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Gjøvik Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Ultimo Australia
A new trend of smart city development opens up many challenges. One such issue is that automatic vehicle driving and detection for toll fee payment in night or limited light environments. This paper presents a new wor... 详细信息
来源: 评论
A novel feature extracting method for dynamic gesture recognition based on support vector machine
A novel feature extracting method for dynamic gesture recogn...
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Yuanrong Xu Qianqian Wang Xiao Bai Yen-Lun Chen Xinyu Wu Shenzhen Key Lab for Computer Vision and Pattern Recognition Chinese Academy of Sciences University of Science and Technology of China Dept. Mechanical and Automation Engineering The Chinese University of Hong Kong Guangdong Provincial Key Laboratory of Robotics and Intelligent System Chinese Academy of Sciences
In this paper, we propose a method based on the SVM algorithm to recognize dynamic hand gestures. The information of motion trajectory is captured by a leap motion in three-dimension space. A new methodology of featur... 详细信息
来源: 评论
Structure Function Based Transform Features for Behavior-Oriented Social Media Image Classification  5th
Structure Function Based Transform Features for Behavior-Ori...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Krishnani, Divya Shivakumara, Palaiahnakote Lu, Tong Pal, Umapada Ramachandra, Raghavendra International Institute of Information Technology Naya Raipur Naya RaipurChhattisgarh India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Trondheim Norway
Social media has become an essential part of people to reflect their day to day activities including emotions, feelings, threatening and so on. This paper presents a new method for the automatic classification of beha... 详细信息
来源: 评论
Multiple domain experts collaborative learning: Multi-source domain generalization for person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Zhu, Feng Chen, Dapeng Zhao, Rui Chen, Haobin Zhu, Jinguo Tang, Shixiang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China
Recent years have witnessed significant progress in person re-identification (ReID). However, current ReID approaches still suffer from considerable performance degradation when unseen testing domains exhibit differen... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yi Zhang, Xuan Li, Ying Liang, Guixin Jiang, Yabing Qiu, Lixia Tang, Haiping Xie, Fei Yao, Wei Dai, Yi Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shenzhen Bwell Technology Co. Ltd China Shenzhen Longhua Drainage Co. Ltd China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single cl... 详细信息
来源: 评论
Dynamic hand gesture early recognition based on Hidden Semi-Markov Models
Dynamic hand gesture early recognition based on Hidden Semi-...
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Qianqian Wang Yuanrong Xu Yen-Lun Chen Yong Wang Xinyu Wu University of Science and Technology of China Shenzhen Key Lab for Computer Vision and Pattern Recognition Chinese Academy of Sciences Dept. Mechanical and Automation Engineering The Chinese University of Hong Kong. Guangdong Provincial Key Laboratory of Robotics and Intelligent System Chinese Academy of Sciences
Real-time performance can be greatly improved, if the early recognition is implemented. In this paper, a dynamic hand gesture early recognition system is proposed. The system can recognize the gesture before it is com... 详细信息
来源: 评论
A new journey from SDRTV to HDRTV
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Xiangyu Zhang, Zhengwen Ren, Jimmy S. Tian, Lynhoo Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai China SenseTime Research Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China Shanghai AI Laboratory Shanghai China
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most available resources are still in standard dynamic range (SDR). Therefore, there is a... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论