咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 77 篇 期刊文献

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 122 篇 工学
    • 74 篇 计算机科学与技术...
    • 73 篇 软件工程
    • 31 篇 信息与通信工程
    • 20 篇 光学工程
    • 20 篇 生物工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 6 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 5 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 测绘科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 22 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 30 篇 管理学
    • 21 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 27 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 60 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 174 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Lab for Computer Vision and Pattern Recognition"
180 条 记 录,以下是81-90 订阅
排序:
Weakly Supervised Temporal Sentence Grounding via Positive Sample Mining
arXiv
收藏 引用
arXiv 2025年
作者: Dong, Lu Zhang, Haiyu Zhang, Hongjie Huang, Yifei Ling, Zhen-Hua Qiao, Yu Wang, Limin Wang, Yali University of Science and Technology of China Hefei230027 China Shanghai Artificial Intelligence Laboratory Shanghai202150 China Beihang University Beijing100191 China State Key Laboratory for Novel Software Technology Nanjing University Nanjing210023 China Shenzhen Key Laboratory of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China
The task of weakly supervised temporal sentence grounding (WSTSG) aims to detect temporal intervals corresponding to a language description from untrimmed videos with only video-level video-language correspondence. Fo... 详细信息
来源: 评论
Learning to predict context-adaptive convolution for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Ren, Jimmy S. Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods [34] demonstrate that using global context for re-weighting feature channels c... 详细信息
来源: 评论
Enhanced quadratic video interpolation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SenseTime Research
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
New Moments Based Fuzzy Similarity Measure for Text Detection in Distorted Social Media Images  5th
New Moments Based Fuzzy Similarity Measure for Text Detectio...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Roy, Soumyadip Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Australia
A trend towards capturing or filming images using cellphone and sharing images on social media is a part and parcel of day to day activities of humans. When an image is forwarded several times in social media it may b... 详细信息
来源: 评论
Multiple Transfer Learning and Multi-label Balanced Training Strategies for Facial AU Detection In the Wild
Multiple Transfer Learning and Multi-label Balanced Training...
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Sijie Ji Kai Wang Xiaojiang Peng Jianfei Yang Zhaoyang Zeng Yu Qiao Nanyang Technological University Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science Sun Yat-Sen University China
This paper 1 presents SIAT-NTU solution and results of facial action unit (AU) detection in the EmotiNet Challenge 2020. The task aims to detect 23 AUs from facial images in the wild, and its main difficulties lie in... 详细信息
来源: 评论
Suppressing uncertainties for large-scale facial expression recognition
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Kai Peng, Xiaojiang Yang, Jianfei Lu, Shijian Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Nanyang Technological University Singapore
Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. T... 详细信息
来源: 评论
Suppressing Uncertainties for Large-Scale Facial Expression recognition
Suppressing Uncertainties for Large-Scale Facial Expression ...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Kai Wang Xiaojiang Peng Jianfei Yang Shijian Lu Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Nanyang Technological University Singapore
Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. T... 详细信息
来源: 评论
Chebyshev-Harmonic-Fourier-Moments and Deep CNNs for Detecting Forged Handwriting
Chebyshev-Harmonic-Fourier-Moments and Deep CNNs for Detecti...
收藏 引用
International Conference on pattern recognition
作者: Lokesh Nandanwar Palaiahnakote Shivakumara Sayani Kundu Umapada Pal Tong Lu Daniel Lopresti Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Science & Engineering Lehigh University Bethlehem PA USA
Recently developed sophisticated image processing techniques and tools have made easier the creation of high-quality forgeries of handwritten documents including financial and property records. To detect such forgerie... 详细信息
来源: 评论
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-Identification
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Shijie Yu Shihua Li Dapeng Chen Rui Zhao Junjie Yan Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science University of Chinese Academy of Sciences China Institute of Microelectronics of the Chinese Academy of Sciences
Recent years have witnessed great progress in person re-identification (re-id). Several academic benchmarks such as Market1501, CUHK03 and DukeMTMC play important roles to promote the re-id research. To our best knowl... 详细信息
来源: 评论
Attention-driven dynamic graph convolutional network for multi-label image recognition
arXiv
收藏 引用
arXiv 2020年
作者: Ye, Jin He, Junjun Peng, Xiaojiang Wu, Wenhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China School of Biomedical Engineering Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occu... 详细信息
来源: 评论