咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 77 篇 期刊文献

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 122 篇 工学
    • 75 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 32 篇 信息与通信工程
    • 21 篇 生物工程
    • 20 篇 光学工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 80 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 23 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 31 篇 管理学
    • 22 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 60 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 176 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Lab of Computer Vision and Pattern Recognition"
180 条 记 录,以下是111-120 订阅
排序:
OSRT: Omnidirectional Image Super-Resolution with Distortion-aware Transformer
OSRT: Omnidirectional Image Super-Resolution with Distortion...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Fanghua Yu Xintao Wang Mingdeng Cao Gen Li Ying Shan Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences ARC Tencent PCG The University of Tokyo Platform Technologies Tencent Online Video Shanghai Artificial Intelligence Laboratory
Omnidirectional images (ODIs) have obtained lots of research interest for immersive experiences. Although ODIs require extremely high resolution to capture details of the entire scene, the resolutions of most ODIs are...
来源: 评论
EfficientFCN: Holistically-guided decoding for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
Blueprint Separable Residual Network for Efficient Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zheyuan Liu, Yingqi Chen, Xiangyu Cai, Haoming Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Macau China Shanghai AI Laboratory Shanghai China The University of Sydney Australia
Recent advances in single image super-resolution (SISR) have achieved extraordinary performance, but the computational cost is too heavy to apply in edge devices. To alleviate this problem, many novel and effective so... 详细信息
来源: 评论
Local gradient difference features for classification of 2D-3D natural scene text images  25
Local gradient difference features for classification of 2D-...
收藏 引用
25th International Conference on pattern recognition, ICPR 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Raghavendra, Ramachandra Lu, Tong Pal, Umapada Lopresti, Daniel Anuar, Nor Badrul Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science and Engineering Lehigh University BethlehemPA United States
Methods developed for normal 2D text detection do not work well for text that is rendered using decorative, 3D effects, etc. This paper proposes a new method for classification of 2D and 3D natural scene text images s... 详细信息
来源: 评论
Word-Wise Handwriting Based Gender Identification Using Multi-Gabor Response Fusion  4th
Word-Wise Handwriting Based Gender Identification Using Mult...
收藏 引用
4th Workshop on Document Analysis and recognition, DAR 2018, held in Conjunction with the 11th Indian Conference on vision, Graphics, and Image Processing, ICVGIP 2018
作者: Asadzadeh Kaljahi, Maryam Vidya Varshini, P.V. Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Guru, D.S. Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Vellore Institute of Technology VelloreTamil Nadu India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China Department of Studies in Computer Science Manasagangotri University of Mysuru Mysore India
Handwriting based gender identification at the word level is challenging due to free style writing, use of different scripts, and inadequate information. This paper presents a new method based on Multi-Gabor Response ... 详细信息
来源: 评论
Blind super-resolutionwith iterative kernel correction
arXiv
收藏 引用
arXiv 2019年
作者: Gu, Jinjin Lu, Hannan Zuo, Wangmeng Dong, Chao School of Science and Engineering Chinese University of Hong Kong Shenzhen China School of Computer Science and Technology Harbin Institute of Technology Harbin China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Deep learning based methods have dominated superresolution (SR) field due to their remarkable performance in terms of effectiveness and efficiency. Most of these methods assume that the blur kernel during downsampling... 详细信息
来源: 评论
Suppressing model overfitting for image super-resolution networks
arXiv
收藏 引用
arXiv 2019年
作者: Feng, Ruicheng Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences School of Science and Engineering Chinese University of Hong Kong Shenzhen Hong Kong Chinese University of Hong Kong Hong Kong
Large deep networks have demonstrated competitive performance in single image super-resolution (SISR), with a huge volume of data involved. However, in real-world scenarios, due to the limited accessible training pair... 详细信息
来源: 评论
IFAST: Weakly Supervised Interpretable Face Anti-spoofing from Single-shot Binocular NIR Images
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Zhou, Donghao Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing China Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China The Chinese University of Hong Kong Hong Kong
Single-shot face anti-spoofing (FAS) is a key technique for securing face recognition systems, and it requires only static images as input. However, single-shot FAS remains a challenging and under-explored problem due... 详细信息
来源: 评论
Conditional sequential modulation for efficient global image retouching
arXiv
收藏 引用
arXiv 2020年
作者: He, Jingwen Liu, Yihao Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence Robotics for Society Korea Republic of University of Chinese Academy of Sciences China
Photo retouching aims at enhancing the aesthetic visual quality of images that suffer from photographic defects such as over/under exposure, poor contrast, inharmonious saturation. Practically, photo retouching can be... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Xiangyu Wang, Xintao Zhou, Jiantao Qiao, Yu Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China ARC Lab Tencent PCG China
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information... 详细信息
来源: 评论