咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 77 篇 期刊文献

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 122 篇 工学
    • 75 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 32 篇 信息与通信工程
    • 21 篇 生物工程
    • 20 篇 光学工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 80 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 23 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 31 篇 管理学
    • 22 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 60 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 176 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Lab of Computer Vision and Pattern Recognition"
180 条 记 录,以下是11-20 订阅
排序:
Automatic motion-guided video stylization and personalization  11
Automatic motion-guided video stylization and personalizatio...
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Cao, Chen Chen, Shifeng Zhang, Wei Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong
Video stylization transfers a source video into an artistic version while maintaining temporal coherence between adjacent frames. In this paper, we formulate the unsupervised example-based video stylization with Marko... 详细信息
来源: 评论
Edge-preserving single image super-resolution  11
Edge-preserving single image super-resolution
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Zhou, Qiang Chen, Shifeng Liu, Jianzhuang Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong
This paper proposes a novel approach to single image super-resolution. First, an image up-sampling scheme is proposed which takes the advantages of both bilateral filtering and mean shift image segmentation. Then we u... 详细信息
来源: 评论
Visual Compositional Learning for Human-Object Interaction Detection  16th
Visual Compositional Learning for Human-Object Interaction D...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Hou, Zhi Peng, Xiaojiang Qiao, Yu Tao, Dacheng UBTECH Sydney AI Centre School of Computer Science Faculty of Engineering The University of Sydney DarlingtonNSW2008 Australia Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China
Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types... 详细信息
来源: 评论
RBF-Softmax: Learning Deep Representative Prototypes with Radial Basis Function Softmax  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Zhang, Xiao Zhao, Rui Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Lab The Chinese University of Hong Kong Hong Kong SenseTime Research Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Deep neural networks have achieved remarkable successes in learning feature representations for visual classification. However, deep features learned by the softmax cross-entropy loss generally show excessive intra-cl... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Pixel Attention  16th
Efficient Image Super-Resolution Using Pixel Attention
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Zhao, Hengyuan Kong, Xiangtao He, Jingwen Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China University of Chinese Academy of Sciences Beijing China
This work aims at designing a lightweight convolutional neural network for image super resolution (SR). With simplicity bare in mind, we construct a pretty concise and effective network with a newly proposed pixel att... 详细信息
来源: 评论
Conditional Sequential Modulation for Efficient Global Image Retouching  16th
Conditional Sequential Modulation for Efficient Global Image...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: He, Jingwen Liu, Yihao Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT - SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China University of Chinese Academy of Sciences Beijing China
Photo retouching aims at enhancing the aesthetic visual quality of images that suffer from photographic defects such as over/under exposure, poor contrast, inharmonious saturation. Practically, photo retouching can be... 详细信息
来源: 评论
Learning to Predict Context-Adaptive Convolution for Semantic Segmentation  16th
Learning to Predict Context-Adaptive Convolution for Semanti...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Qiao, Yu Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Hong Kong
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can ef... 详细信息
来源: 评论
Facial landmark localization based on hierarchical pose regression with cascaded random ferns  13
Facial landmark localization based on hierarchical pose regr...
收藏 引用
21st ACM International Conference on Multimedia, MM 2013
作者: Zhang, Zhanpeng Zhang, Wei Liu, Jianzhuang Tang, Xiaoou Shenzhen Key Lab of Computer Vision and Pattern Recognition Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology China Department of Information Engineering Chinese University of Hong Kong Hong Kong Media Lab Huawei Technologies Co. Ltd. China
The main challenge of facial landmark localization in realworld application is that the large changes of head pose and facial expressions cause substantial image appearance variations. To avoid high dimensional regres... 详细信息
来源: 评论
Multi-feature canonical correlation analysis for face photo-sketch image retrieval  13
Multi-feature canonical correlation analysis for face photo-...
收藏 引用
21st ACM International Conference on Multimedia, MM 2013
作者: Gong, Dihong Li, Zhifeng Liu, Jianzhuang Qiao, Yu Shenzhen Key Lab of Computer Vision and Pattern Recognition Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology China Media Lab Huawei Technologies Co. Ltd. China Department of Information Engineering Chinese University of Hong Kong Hong Kong
Automatic face photo-sketch image retrieval has attracted great attention in recent years due to its important applications in real life. The major difficulty in automatic face photo-sketch image retrieval lies in the... 详细信息
来源: 评论