咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 77 篇 期刊文献

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 122 篇 工学
    • 75 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 32 篇 信息与通信工程
    • 21 篇 生物工程
    • 20 篇 光学工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 80 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 23 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 31 篇 管理学
    • 22 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 60 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 176 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Lab of Computer Vision and Pattern Recognition"
180 条 记 录,以下是21-30 订阅
排序:
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
Robust text line detection in equipment nameplate images
Robust text line detection in equipment nameplate images
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Lai, Jiangyu Guo, Lanqing Qiao, Yu Chen, Xiaolong Zhang, Zhengfu Liu, Canping Li, Ying Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIATSenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Scene text detection for equipment nameplates in the wild is important for equipment inspection robot since it enables inspection robot to take specific actions for different equipment's. Although text detection i... 详细信息
来源: 评论
Tensor Low-Rank Reconstruction for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Chen, Wanli Zhu, Xinge Sun, Ruoqi He, Junjun Li, Ruiyu Shen, Xiaoyong Yu, Bei The Chinese University of Hong Kong New Territories Hong Kong Shanghai Jiao Tong University Shanghai China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SmartMore Shenzhen China
Context information plays an indispensable role in the success of semantic segmentation. Recently, non-local self-attention based methods are proved to be effective for context information collection. Since the desire... 详细信息
来源: 评论
Online non-feedback image re-ranking via dominant data selection
Online non-feedback image re-ranking via dominant data selec...
收藏 引用
20th ACM International Conference on Multimedia, MM 2012
作者: Cao, Chen Chen, Shifeng Li, Yuhong Liu, Jianzhuang Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Department of Information Engineering Chinese University of Hong Kong Hong Kong Media Lab. Huawei Technologies Co. Ltd. China
Image re-ranking aims at improving the precision of keyword-based image retrieval, mainly by introducing visual features to re-rank. Many existing approaches require offline training for every keyword, which are unsui... 详细信息
来源: 评论
Learning Discriminative Representation For Facial Expression recognition From Uncertainties
Learning Discriminative Representation For Facial Expression...
收藏 引用
IEEE International Conference on Image Processing
作者: Xingyu Fan Zhongying Deng Kai Wang Xiaojiang Peng Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Recent progresses on Facial Expression recognition (FER) heavily rely on deep learning models trained with large scale datasets. However, large-scale facial expression datasets always suffer from annotation uncertaint... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network  17th
UDC-UNet: Under-Display Camera Image Restoration via U-shap...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China University of Macau Zhuhai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
The equipment nameplate dataset for scene text detection and recognition
The equipment nameplate dataset for scene text detection and...
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Chen, Xiaolong Zhang, Zhengfu Qiao, Yu Zhang, Pu Guo, Lanqing Chen, Wenrui Chen, Chen Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
In this paper, we introduce the Equipment Nameplate Dataset, a large dataset for scene text detection and recognition. Natural images in this dataset are taken in the wild and thus this dataset includes various intra-... 详细信息
来源: 评论
Orientation robust scene text recognition in natural scene
Orientation robust scene text recognition in natural scene
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Chen, Xiaolong Zhang, Zhengfu Qiao, Yu Lai, Jiangyu Jiang, Jian Zhang, Zeyu Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
In recent years, scene text recognition has achieved significant improvement and various state-of-the-art recognition approaches have been proposed. This paper focused on recognizing text in natural photos of equipmen... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Fast single image dehazing through Edge-Guided Interpolated Filter
Fast single image dehazing through Edge-Guided Interpolated ...
收藏 引用
IAPR International Conference on Machine vision Applications (MVA)
作者: Ximei Zhu Ying Li Yu Qiao Shenzhen Key lab of Computer Vision Pattern Recognition The Chinese University of Hong Kong Hong Kong SAR
Images and videos taken in foggy weather often suffer from low visibility. Recent studies demonstrate the effectiveness of dark channel prior [3] and guided filter [4] based approaches for image dehazing. However, the... 详细信息
来源: 评论