咨询与建议

限定检索结果

文献类型

  • 103 篇 会议
  • 77 篇 期刊文献

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 122 篇 工学
    • 75 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 32 篇 信息与通信工程
    • 21 篇 生物工程
    • 20 篇 光学工程
    • 18 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 80 篇 理学
    • 40 篇 物理学
    • 29 篇 数学
    • 23 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
  • 31 篇 管理学
    • 22 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 艺术学

主题

  • 12 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image segmentati...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 7 篇 face
  • 7 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face recognition
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 8 篇 shanghai ai lab
  • 7 篇 department of st...
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 university of ma...

作者

  • 60 篇 qiao yu
  • 28 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 176 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Lab of Computer Vision and Pattern Recognition"
180 条 记 录,以下是31-40 订阅
排序:
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL REPRESENTATION LEARNING  10
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Li, Kunchang Wang, Yali Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SenseTime Research The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to large local redundancy and complex global dependency between video frames. The recent advances in th... 详细信息
来源: 评论
Adaptive Pyramid Context Network for Semantic Segmentation
Adaptive Pyramid Context Network for Semantic Segmentation
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Junjun He Zhongying Deng Lei Zhou Yali Wang Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Recent studies witnessed that context features can significantly improve the performance of deep semantic segmentation networks. Current context based segmentation methods differ with each other in how to construct co... 详细信息
来源: 评论
Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers
Modulating Image Restoration with Continual Levels via Adapt...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Jingwen He Chao Dong Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
In image restoration tasks, like denoising and super-resolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image... 详细信息
来源: 评论
Automatic object segmentation from large scale 3D urban point clouds through manifold embedded mode seeking  11
Automatic object segmentation from large scale 3D urban poin...
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Yu, Zhiding Xu, Chunjing Liu, Jianzhuang Au, Oscar C. Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Hong Kong Department of Information Engineering Chinese University of Hong Kong Hong Kong
This paper presents a system that can automatically segment objects in large scale 3D point clouds obtained from urban ranging images. The system consists of three steps: The first one involves a ground detection proc... 详细信息
来源: 评论
Deformation Robust Text Spotting with Geometric Prior
Deformation Robust Text Spotting with Geometric Prior
收藏 引用
IEEE International Conference on Image Processing
作者: Xixuan Hao Aozhong Zhang Xianze Meng Bin Fu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The University of Hong Kong
The goal of text spotting is to perform text detection and recognition simultaneously. Although the diversity of luminosity and orientation in scene texts has been widely studied, the font diversity and shape variance...
来源: 评论
MetaCleaner: Learning to Hallucinate Clean Representations for Noisy-labeled Visual recognition
MetaCleaner: Learning to Hallucinate Clean Representations f...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Weihe Zhang Yali Wang Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Deep Neural Networks (DNNs) have achieved remarkable successes in large-scale visual recognition. However, they often suffer from overfitting under noisy labels. To alleviate this problem, we propose a conceptually si... 详细信息
来源: 评论
Multi-dimension modulation for image restoration with dynamic controllable residual Learning
arXiv
收藏 引用
arXiv 2019年
作者: He, Jingwen Dong, Chao Qiaoy, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Based on the great success of deterministic learning, to interactively control the output effects has attracted increasingly attention in the image restoration field. The goal is to generate continuous restored images... 详细信息
来源: 评论
3D object retrieval with semantic attributes  11
3D object retrieval with semantic attributes
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Gong, Boqing Liu, Jianzhuang Wang, Xiaogang Tang, Xiaoou Department of Information Engineering Chinese University of Hong Kong Hong Kong Department of Electronic Engineering Chinese University of Hong Kong Hong Kong Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Humans are capable of describing objects using attributes, such as "the object looks circular and is man-made". Motivated by these high-level descriptions, we build a user-friendly 3D object retrieval system... 详细信息
来源: 评论
Generalized Multimodal Fusion via Poisson-Nernst-Planck Equation
arXiv
收藏 引用
arXiv 2024年
作者: Xiong, Jiayu Wang, Jing Xiang, Hengjing Xue, Jun Xu, Chen Jiang, Zhouqiang Xiamen Key Lab of Computer Vision and Pattern Recognition Huaqiao University Xiamen China
Previous studies have highlighted significant advancements in multimodal fusion. Nevertheless, such methods often encounter challenges regarding the efficacy of feature extraction, data integrity, consistency of featu... 详细信息
来源: 评论
Neural Transformation Fields for Arbitrary-Styled Font Generation
Neural Transformation Fields for Arbitrary-Styled Font Gener...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Bin Fu Junjun He Jianjun Wang Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG), aiming at generating font images with a few samples, is an emerging topic in recent years due to the academic and commercial values. Typically, the FFG approaches follow the style-conte...
来源: 评论